MELUHA INTERNATIONAL SCHOOL

HYDERABAD

SR MPC JEE MAINS	UNIT – IV	Date: 04-05-2020
Time:	ASSIGNMENT – 3	Max. Marks:

MATHS Syllabus: <u>CALCULUS:-</u> 1. LIMITS, 2. CONTINUITY & DIFFERENTIABILITY, 3. DERIVATIVES, 4. APPLICATIONS OF DERIVATIVES , 5.INDEFINITE INTEGRATION, 6. DEFINITE INTEGRATION , 7. AREAS, 8. DIFFERENTIAL EQUATIONS If $\int \frac{\sin x}{\sin(x-\alpha)} dx = Ax + B\log\sin(x-\alpha) + c$, then value of (A, B) is 1. (A) $(\sin \alpha, \cos \alpha)$ (B) $(\cos \alpha, \sin \alpha)$ (C) $(-\sin \alpha, \cos \alpha)$ (D) $(-\cos\alpha, \sin\alpha)$ $\int \frac{dx}{\cos x - \sin x}$ is equal to 2. (A) $\frac{1}{\sqrt{2}} \log \left| \tan \left(\frac{x}{2} - \frac{\pi}{8} \right) \right| + c$ (B) $\frac{1}{\sqrt{2}} \log \left| \cot \left(\frac{x}{2} \right) \right| + c$ (C) $\frac{1}{\sqrt{2}} \log \left| \tan \left(\frac{x}{2} - \frac{3\pi}{8} \right) \right| + c$ (D) $\frac{1}{\sqrt{2}} \log \left| \tan \left(\frac{x}{2} + \frac{3\pi}{8} \right) \right| + c$ 3. $\int \left\{ \frac{(\log x - 1)}{1 + (\log x)^2} \right\}^2 dx$ is equal to (A) $\frac{x}{(\log x)^2 + 1} + c$ (B) $\frac{xe^x}{1 + x^2} + c$ (C) $\frac{x}{x^2 + 1} + c$ (D) $\frac{\log x}{(\log x)^2 + 1}$ 4. If $\int \frac{dx}{\sqrt{\sin^3 x \cos^5 x}} = a\sqrt{\cot x} + b\sqrt{\tan^3 x} + c$, then (A) a = -1, b = 1/3 (B) a = -3, b = 2/3 (C) a = -2, b = 4/3 (D) a = -2, b = 2/3 $\int \frac{\ln(\tan x)}{\sin x \cos x} dx$ is equal to 5. (A) $\frac{1}{2}\ln(\tan x) + c$ (B) $\frac{1}{2}\ln(\tan^2 x) + c$ (C) $\frac{1}{2}(\ln(\tan x))^2 + c$ (D) None of these The value of $\int_{-\pi/2}^{\pi/2} (x^3 + x \cos x + \tan^5 x + 1) dx$ 6. (A) 0(C) *π* (B) 2 (D) 1 The value of $\int_0^{\pi/2} \log\left(\frac{4+3\sin x}{4+3\cos x}\right) dx$ is 7. (B) $\frac{3}{4}$ (A)2 (C) 0(D) -2 The value of $\int_0^1 \tan^{-1} \left(\frac{2x-1}{1+x-x^2} \right) dx$ is 8. (D) $\frac{\pi}{4}$ (A) 1 (B) 0 (C) -1

9. The value of
$$\int_{0}^{1} \tan^{-1} \left(\frac{2x-1}{1+x-x^{2}} \right) dx$$
 is
(A) 1 (B) 0 (C) -1 (D) $\frac{\pi}{4}$
10. If f and g are continuous functions in $[0,1]$ satisfying $f(x) = f(a-x)$ and $g(x) + g(a-x) = a$, then $\int_{0}^{a} f(x) \cdot g(x) dx$ is equal to
(A) $\frac{a}{2}$ (B) $\frac{a}{2} \int_{0}^{a} f(x) dx$ (C) $\int_{0}^{a} f(x) dx$ (D) $a \int_{0}^{a} f(x) dx$
11. If $x = \int_{0}^{y} \frac{dt}{\sqrt{1+g^{2}}}$ and $\frac{d^{2}x}{dx^{2}} = ay$, then a is equal to
(A) 3 (B) 6 (C) 9 (D) 1
12. If $\int_{0}^{1} \frac{e^{t}}{t} dt = a$, then $\int_{0}^{1} \frac{e^{t}}{(1+t)^{2}} dt$ is equal to
(A) $a - 1 + \frac{e}{2}$ (B) $a + 1 - \frac{e}{2}$ (C) $a - 1 - \frac{e}{2}$ (D) $a + 1 + \frac{e}{2}$
13. Evaluate $\lim_{e \to \infty} \frac{1}{n} \sum_{r=s=1}^{2n} \log_{r} \left(1 + \frac{r}{n} \right)$
(A) $\log \left(\frac{27}{4e} \right)$ (B) $\log \left(\frac{4}{e} \right)$ (C) $\log \left(\frac{25}{3e^{2}} \right)$ (D) $\log \left(\frac{27}{e^{2}} \right)$
14. Evaluate $\lim_{e \to \infty} \sum_{r=1}^{s} \frac{n}{(n+r)^{2}}$
(A) $\frac{3}{4}$ (B) $\frac{2}{3}$ (C) $\frac{2}{9}$ (D) $\frac{1}{2}$
15. $\int_{a+c}^{b+c} f(x) dx$ is equal to
(A) $\frac{3}{a} \int (x-c) dx$ (B) $\int_{a}^{b} f(x+c) dx$ (C) $\int_{a}^{b} f(x) dx$ (D) $\int_{a-c}^{b-c} f(x) dx$
16. The value of the integral $\int_{3}^{s} \frac{\sqrt{x}}{\sqrt{9-x}+\sqrt{x}} dx$ is
(A) $\frac{3}{2}$ (B) 2 (C) 1 (D) $\frac{1}{2}$
17. $\int_{v}^{s} \frac{dx}{(x^{2}+a^{2})(x^{2}+b^{2})} =$
(A) $\frac{\pi ab}{(a+b)}$ (B) $\frac{\pi}{2(a+b)}$ (C) $\frac{\pi}{2ab(a+b)}$ (D) $\frac{\pi(a+b)}{ab}$
18. $\int_{-x}^{s} \frac{2x(1+sin x)}{1+cos^{2} x} dx =$
(A) $\frac{\pi^{2}}{4}$ (B) π^{2} (C) 0 (D) $\frac{\pi}{2}$

19. If
$$\int_{0}^{1} \frac{\sin x}{1+x} dx = K$$
 then the value of $\int_{4\pi}^{4\pi} \frac{\sin\left(\frac{x}{2}\right)}{4\pi + 2 - x} dx$ equals
(A) $-k$ (B) $\frac{k}{2}$ (C) $\frac{-k}{2}$ (D) $\frac{k-1}{2}$
20. Let $u = \int_{0}^{\pi/4} \frac{\cos^2 x}{1+\sin 2x} dx$, $v = \int_{0}^{\pi/4} \frac{1}{(1+\tan 2x)^2} dx$ then the value of $\frac{u}{v}$ equals
(A) 1 (B) $\frac{1}{2}$ (C) 2 (D) 4
21. Let $f(x)$ be a differentiable function on R such that $f(6+x) = f(6-x)$,
 $f(4+x) = f(4-x)$ and $f(7) = 1$ and $\int_{k}^{k+4} f(x) dx = 5$ then the value of $\int_{0}^{7} x f'(x) dx$ equals
(A) 1 (B) -1 (C) 2 (D) -2
22. If $\frac{L}{4x} \int_{0}^{\pi/4} \left(1-\frac{x^2}{n}\right)^n x dx = \frac{1}{2\sqrt{2}} (n \in N)$ then the value of 'a' equals
(A) $2(n2$ (B) $2(n3$ (C) $2 + (n3$ (D) $(n(2 + \sqrt{2}))$
23. The value of $\int_{0}^{1} x(1-x)^{ss} dx$ is
(A) $\frac{1}{10100}$ (B) $\frac{11}{10100}$ (C) $\frac{1}{1010}$ (D) None of these
24. $I_1 = \int_{0}^{1} \left[x + \frac{3}{2}\right] dx$ and $I_2 = \int_{0}^{\pi} \sqrt{\frac{1+\cos 2x}{2}} dx$ then (L) denotes the G.I.F.)
(A) $I_1 = 6I_2$ (B) $I_1 = 2I_2$ (C) $I_2 = 2I_1$ (D) $I_1 + I_2 = 0$
25. If $\int_{0}^{1} (\frac{(2x+3) \sec x \tan x}{4} dx = \frac{(p\pi + q)\pi}{3\sqrt{3}} dx$ then $p + q =$
(A) 4 (B) 5 (C) 6 (D) 8
26. The value of $\int_{0}^{13/2} \cos^4 3x \sin^2 6x dx$ equals
(A) $\frac{1}{\sqrt{e}}$ (B) $\frac{2}{\sqrt{e}}$ (C) $\frac{3}{\sqrt{e}}$ (D) $\frac{4}{\sqrt{e}}$
27. The value of $\int_{0}^{13/2} \cos^4 3x \sin^2 6x dx$ equals
(A) $\frac{15\pi}{64}$ (B) 0 (C) $\frac{5\pi}{64}$ (D) $\frac{5\pi}{32}$
28. Let $I_n = \int_{0}^{1} (1-x^*)^n dx$ and if $\frac{I_n}{I_{n+1}} = 1 + \frac{\lambda}{a}$ then λ equals
(A) n (B) n+1 (C) $\frac{1}{n}$ (D) $\frac{1}{n+1}$

29. The value of
$$\sum_{k=2}^{n} \left\{ L_{k} \sum_{j=1}^{n} \left(\frac{\sqrt{n}}{\sqrt{r} \left(k \sqrt{n} - \sqrt{r} \right)^{2}} \right) \right\}$$
 equals
(A) $\frac{1}{2}$ (B) 2 (C) 4 (D) $\frac{3}{2}$
30. Let 'f be a one-one continuous function such that $f(1) = 4$, $f(2) = 6$, given that
 $\int_{-1}^{2} f(x) dx = 20$ then the value of $\int_{0}^{6} f^{-1}(x) dx$ equals
(A) 6 (B) -8 (C) -10 (D) -12
31. The value of $\int_{\pi}^{3} \frac{\sin^{-1}(\sin x)}{\sin^{4} x + \cos^{4} x} dx$ equals
(A) 0 (B) π (C) $\frac{\pi}{2}$ (D) 2π
32. The value of $I = \int_{0}^{1} ln(\cos x) dx$ has the same value as that of the definite integral given below
(A) $\int_{0}^{1} \frac{lnx}{\sqrt{1-x^{2}}} dx$ (B) $\int_{\cos 1}^{1} \frac{lnx}{\sqrt{1-x^{2}}} dx$ (C) $\frac{1}{4} \int_{\cos^{2} 1}^{1} \frac{lnx}{\sqrt{x-x^{2}}} dx$ (D) $\int_{\cos 2}^{1} \frac{1}{\sqrt{1-x^{2}}} dx$
33. The value of $L_{1}^{1} \int_{0}^{1} \tan(t\sin x) dx$ equals
(A) 0 (B) 1 (C) 2 (D) -1
34. Let $f(x)$ be a continuous function such that $\int_{0}^{1} f(x)(2x - f(x)) dx = \frac{1}{3}$ then the value of $f(3)$
cquals
(A) 0 (B) 1 (C) 2 (D) -1
35. The value of $\int_{0}^{10} \left[\cot^{-1} x \right] dx$ is K then the value of [k] equals (where [] is G.I.F.)
(A) 0 (B) 1 (C) 99 (D) 98
36. Let $f:(0, \infty) \rightarrow R$ and $F(x) = \int_{0}^{\pi} f(t) dt$ If $F(x^{2}) = x^{2}(1 + x)$, then $f(4)$ equals:
(A) 5/4 (B) 7 (C) 4 (D) 2
37. The value of the integral $\int_{x-1}^{2} \left| \frac{\log x}{x} \right| dx$ is
(A) 3/2 (B) 5/2 (C) 3 (D) 5
38. If $f(x) = \begin{cases} e^{\cos x} \sin x for |x| \le 2 \\ otherwise^{1} x \end{bmatrix} dx$ is
(A) 3/2 (B) 5/2 (C) 3 (D) 5
38. If $f(x) = \begin{cases} e^{\cos x} \sin x for |x| \le 2 \\ otherwise^{1} x \end{bmatrix} dx$ is
(A) 3/2 (B) 5/2 (C) 3 (D) 5
39. Let $g(x) = \int_{0}^{x} f(t) dt$, where f is such that $\frac{1}{2} \le f(t) \le 1$ for $t \in [0, 1]$ and $0 \le f(t) \le \frac{1}{2}$ for
 $t \in [1, 2]$. Then g(2) satisfies the inequality:
(A) $-\frac{3}{2} \le g(2) < \frac{1}{2}$ (B) $0 \le g(2) < 2$ (C) $\frac{3}{2} < g(2) \le \frac{5}{2}$ (D) $2 < g(2) < 4$

_

40.	$\lim_{x \to \infty} \frac{1}{n} \sum_{r=1}^{2n} \frac{r}{\sqrt{n^2 + r^2}} equ$	ials:		
	(A) $1 + \sqrt{5}$	(B) $-1 + \sqrt{5}$	(C) $-1 + \sqrt{2}$	(D) $1 + \sqrt{2}$
41.	If for a real number <i>y</i> ,	$\begin{bmatrix} y \end{bmatrix}$ is the greatest integratest	ger less than or equal to y, th	en the value of the
	integral $\int_{\pi/2}^{3\pi/2} [2\sin x]$	dx is:		
	$(A) -\pi$	(B) 0	(C) $-\frac{\pi}{2}$	(D) $\frac{\pi}{2}$
42.	$\int_{\pi/4}^{3\pi/4} \frac{dx}{1+\cos x} \text{ is equal}$	to:		
	(A) 2	(B) – 2	(C) $\frac{1}{2}$	(D) $-\frac{1}{2}$
43.	$\int_0^x f(t) dx = x + \int_x^1 t f(t) dx = x + \int_x^1 t f(t) dx = x + \int_x^1 t f(t) dt$	(t)dt, then the value of	f(1) is:	
	(A) $\frac{1}{2}$	(B) 0	(C) 1	(D) $-\frac{1}{2}$
44.	Let $f(x) = x - [x]$, for	r every real number <i>x</i> ,	where $[x]$ is the integral part	of <i>x</i> .
	Then $\int_{-1}^{1} f(x) dx$ is			
	(A) 1	(B) 2	(C) 0	(D) $-\frac{1}{2}$
45.	If $g(x) = \int_0^x \cos^4 t dt$,	then $g(x+\pi)$ equals:		
	(A) $g(x) + g(\pi)$	(B) $g(x)-g(\pi)$	(C) $g(x)g(\pi)$	(D) $\frac{g(x)}{g(\pi)}$
46.	The area inside the par	abola $5x^2 - y = 0$ but o	utside the parabola $2x^2 - y +$	9 = 0 is
17	(A) $12\sqrt{3}$ sq. units The area of the region.	(B) $6\sqrt{3}$ sq. units	(C) $8\sqrt{3}$ sq. units $y = x \log x$ and $y = 2x - 2x^2$	(D) $4\sqrt{3}$ sq. units
47.	(A) $\frac{7}{2}$ sq unit	(B) $\frac{1}{2}$ sq. unit	$y = x \log x$ and $y = 2x - 2x$ (C) $\frac{5}{2}$ sq unit	(D) none of these
	$\frac{(A)}{12}$ sq. unit	$(\mathbf{D}) \frac{1}{2}$ sq. unit	(c) $\frac{12}{12}$ sq. unit	(D) none of these
48.	Area bounded by $y = -\frac{1}{2}$	$\frac{1}{x^2-2x+2}$ and the x-ax	xis is	
	(A) 2π sq. units	(B) $\frac{\pi}{2}$ sq. units	(C) 2 sq. units	(D) π sq. units
49.	The area bounded by y	$y = \sec^{-1} x, y = \csc^{-1} x$	x, and line $x - 1 = 0$ is	
	(A) $\log(3+2\sqrt{2}) - \frac{\pi}{2}$	sq. units	(B) $\frac{\pi}{2} - \log(3 + 2\sqrt{2})$ sq. u	nits
	(C) π -log _e 3 sq. unit		(D) none of these	
50.	The area of the closed	figure bounded by x =	- 1, x = 2 and $y = \begin{cases} -x^2 + 2\\ -2x - 1, \end{cases}$	$x \le 1$ x > 1 and the abscissa
	axis is (A) 16/3 sq. units	(B) 10/3 sq. units	(C) 13/3 sq. units	(D) 7/3 sq. units
51.	The area of the region	bounded by $x = 0$, $y = 0$	0, $x = 2$, $y = 2$, $y \le e^x$ and $y \ge e^x$	≥ ln x, is
	(A) $6-4 \ln 2$ sq. units		(B) 4 ln 2 – 2 sq. units	
	(C) $2 \ln 2 - 4$ sq. units		(D) $6 - 2 \ln 2$ sq. units	

The area bounded by y = 3 - |3 - x| and $y = \frac{6}{|x+1|}$ is 52. (A) $\frac{15}{2}$ - 6ln 2 sq. units (B) $\frac{13}{2}$ - 3ln 2 sq. units (C) $\frac{13}{2}$ - 6 ln 2 sq. units (D) none of these Area bounded by the curves $y = \log_e x$ and $y = (\log_e x)^2$ is 53. (B) 3 - e sq. units (C) e sq. units (D) e - 1 sq. units (A) e - 2 sq. units The area bounded by the curve $f(x) = x + \sin x$ and its inverse function between the ordinates x 54. = 0 and $x = 2\pi$ is (A) 4π sq. units (B) 8π sq. units (C) 4 sq. units (D) 8 sq. units Let f(x) be a non-negative continuous function such that the area bounded by the curve 55. y = f(x), the x-axis, and the ordinates $x = \frac{\pi}{4}$ and $x = \beta > \frac{\pi}{4}$ is $\beta \sin \beta + \frac{\pi}{4} \cos \beta + \sqrt{2}\beta$. Then $f'\left(\frac{\pi}{2}\right)$ is (A) $\left(\frac{\pi}{2} - \sqrt{2} - 1\right)$ (B) $\left(\frac{\pi}{4} + \sqrt{2} - 1\right)$ (C) $-\frac{\pi}{2}$ (D) $\left(1-\frac{\pi}{4}-\sqrt{2}\right)$ The area bounded by y = 2 - |2 - x| and $y = \frac{3}{|x|}$ is $\frac{k - 3\log_e 3}{2}$ then k =_____ 56. (D) 4 (A) 1 (B) 2 The area of the figure bounded by $y = x^2 - 2x + 3$ and the line tangent to it at M(2,3) and 57. y - axis is (A) $\frac{1}{2}$ (B) 8/3(D) 4 (C) 2Area of the curve bounded by $|x-2y|+|x+2y| \le 8$. $xy \ge 2$ is 58. (B) $6 - 4 \log_a 2$ (C) $12 \log_a 2$ (A) $12 - 4 \log_{e} 4$ (D) $3 - \log_{a} 2$ Area of the region bounded by the curve $(y-x)^2 = x^3$ and x = 1 is 59. (B) $\frac{2}{5}$ (C) $\frac{3}{5}$ (D) $\frac{4}{5}$ (A) $\frac{1}{2}$ Area of the region bounded by $x^2 y^2 = a^2 (y^2 - x^2)$ and $x = \pm a$. is λa^2 then $\lambda =$ _____ 60. (D) 4 (A) 1 (B) 2 Area of the region bounded between $y^2 = 4x$ and y = 2x - 4 is 61. (B) 9 (C) 9/4(D) 3 Area bounded between two successive points of intersections of $y = \sin x$, $y = \cos x$ is 62. (C) $2\sqrt{2}$ (A) $\sqrt{2}$ (B) 2 (D) 8 63. If 0 < a < c, 0 < b < c then $\int_{-\infty}^{\infty} \frac{a^x - b^x}{c^x} dx =$ (B) $\frac{\log a - \log b}{\log c}$ (A) $\log \frac{b}{-\log \frac{a}{2}}$ (C) $\frac{1}{\log b/c} - \frac{1}{\log a/c}$ (D) $\log \frac{a}{c} - \log \frac{b}{c}$

64. If
$$\int_{1}^{1} \frac{\cos x}{1 + \sin^{2} x} dx = \frac{\pi}{4}$$
 then k =
(A) 1 (B) $\pi/4$ (C) $\pi/2$ (D) $\pi/6$
65. $\int_{1}^{1} \left[\frac{1}{\log x} - \frac{1}{(\log x)^{2}} \right] dx =$
(A) e^{-2} (B) $e^{+2} \log_{2} e$ (C) $e^{-2} \log_{2} e$ (D) $\log_{2} e^{-2}$
66. Equation of the curve whose sub tangent is constant is
(A) $y^{2} = ce^{\frac{x^{2}}{4}}$ (B) $y = cx^{2}$ (C) $y = ce^{\frac{x}{4}}$ (D) $y = ce^{r^{2}}$
67. Solution of the differential equation $\frac{\sqrt{x} dx + \sqrt{y} dy}{\sqrt{x dx - \sqrt{y} dy}} = \sqrt{\frac{y^{2}}{x^{3}}}$ is given by
(A) $\frac{3}{2} \log\left(\frac{x}{x}\right) + \log\left|\frac{x^{2} + y^{2}}{x^{2}}\right| + \tan^{-1}\left(\frac{x^{2}}{y^{2}}\right)^{2} + c^{-0}$ (D) $\frac{2}{3} \log\left(\frac{x}{x}\right) + \log\left|\frac{x^{2} + y^{2}}{x^{2}}\right| + \tan^{-1}\left(\frac{x^{2}}{x^{2}}\right)^{2} + c^{-0}$ (D) None of the above
68. The degree of the differential equation of all curves having normal of constant length c, is
(A) $1 = (B) 3$ (C) 4 (D) 2
69. The equation of the curve in which the portion of the tangent included between the coordinate
axes is biscted at the point of contact, is
(A) a parabola (B) an ellipse (C) a circle (D) a hyperbola
70. Solution of $\sqrt{1 + x^{2} + y^{2} + x^{2}y^{2}} + xy\frac{dy}{dx} = 0$ is
(A) $\log\left(\frac{x}{\sqrt{1 + x^{2}}}\right) + \sqrt{1 + x^{2}} + \sqrt{1 + y^{2}} = c$ (D) $\log\left(\sqrt{1 + x^{2}} - \sqrt{1 + y^{2}}\right) + \log\left(\frac{x}{\sqrt{1 + x^{2}}}\right) = c$
71. The solution of $\frac{dy}{dx} = xy + 2x - 3y - 6$
(A) $(y+2)^{2} = ce^{(x-3)^{2}}$ (B) $\log(y+2) = x^{2} - 3x + c$
(C) $y(x^{2} - 1) = cx^{2}$ (D) $(y+2)(x-3) = c$
72. The equation of the curve for which the tangent at P(x, y) cuts the y-axis at (0, y^{3}) is
(A) $xy^{2} = x + y$ (B) $x^{2}(y^{2} - 1) = cy^{2}$
(C) $y(x^{2} - 1) = cx^{2}$ (D) $yx + x^{2} = c$
73. If $x\frac{dy}{dx} = y(\log y - \log x + 1)$, then the solution of the equation is
(A) $y\log\left(\frac{x}{y}\right) = cx$ (B) $x\log\left(\frac{y}{x}\right) = cy$ (C) $\log\left(\frac{y}{x}\right) = cx$ (D) $\log\left(\frac{x}{y}\right) = cy$
74. Family $y = Ax + A^{4}$ of curves is the y child ifferential equation of degree
(A) 3 (B) 2 (C) 4 (D) 1
750. The solution of $\frac{dy}{dx} - \frac{2xy}{1 + x^{2}} = 0$ is

(A)
$$y = c(1+x^2)$$
 (B) $y = c\sqrt{1+x^2}$ (C) $y = \frac{c}{1+x^2}$ (D) $y = \frac{c}{\sqrt{1+x^2}}$

The solution of $\frac{dy}{dx} = e^{x-y}$ is (A) $e^{x} - e^{y} = c$ (B) $e^{x} + e^{y} = c$ (C) $e^{-x} - e^{y} = c$ (D) $e^{-x} - e^{-y} = c$ Equation of the curve passing through (1, 3) having slope $\frac{y}{r}$ at any point is 77. (C) $x^2 = 3y$ (B) $y = 3x^2$ (A) y = 3x(D) x = 3y78. Solution of $\frac{dy}{dx} = \frac{x - y + 2}{x + y - 1}$ (A) $x^{2} + y^{2} + xy - 4y - 2x = c$ (B) $x^2 - y^2 - 2xy + 4x + 2y = c$ (C) $x^2 - y^2 + xy + 2x - 4y = c$ (D) $x^{2} + y^{2} - xy + 4x - 2y = c$ 79. Solution of $x + y = \cos^{-1}\left(\frac{dy}{dx}\right)$ is (A) $x + c = \tan\left(\frac{x+y}{2}\right)$ (B) $x + c = \sin\left(\frac{x+y}{2}\right)$ (D) $x + c = cosec\left(\frac{x+y}{2}\right)$ (C) $x + c = \sec\left(\frac{x+y}{2}\right)$ The solution of $x\cos^2 y \, dx = y\cos^2 x \, dy$ 80. (A) $\tan x \tan y = c$ (B) $y \tan y = x \tan x + c$ (D) $y \tan y - x \tan x + \log\left(\frac{\cos y}{\cos x}\right) = c$ (C) $\tan x \cdot \cos y = \tan y \cos x + c$ 81. A curve passes through the point (4, 2) and at any point (x, y) on it the product of its slope and the ordinate is equal to abscissa then the curve is (A) parabola (B) Ellipse (C) Circle (D) Hyperbola 82. If $\frac{dy}{dx} = e^{-2y}$ and y = 0 when x = 5, the value of x for y = 3 is (C) $\frac{e^6 + 9}{2}$ (B) $e^{6} + 1$ (A) e^{5} (D) $\log_a 6$ The solution of $xdx + ydy + (x^2 + y^2)dy = 0$ is 83. (A) $(x^2 + y^2)e^{2y} = c$ (B) $(x^2 + y^2) = cxy$ (C) $(x^2 + y^2) = cx^2$ (D) $(x^2 + y^2)e^{2x} = c$ Smaller area enclosed by the circle $x^2 + y^2 = 4$ and the line x + y = 2, is 84. (D) $2(\pi+2)$ (A) $2(\pi - 2)$ (B) $\pi - 2$ (C) $2\pi - 1$ Area lying between the curve $y^2 = 4x$ and y = 2x, is 85. (D) $\frac{3}{4}$ (A) $\frac{2}{2}$ (B) $\frac{1}{2}$ (C) $\frac{1}{-}$ Area bounded by the curve $y = x^3$, the x-axis and the ordinates x = -2 and x=1, is 86. (B) $\frac{-15}{1}$ (C) $\frac{15}{4}$ (D) $\frac{17}{4}$ (A) -9 The area bounded by the curve y = x|x|, x-axis and the ordinates x = -1 and x = 1 is given by 87. (B) $\frac{1}{2}$ (C) $\frac{2}{2}$ (D) $\frac{4}{2}$ (A) 0The area of the circle $x^2 + y^2 = 16$ exterior to the parabola $y^2 = 6x$, is 88. (D) $\frac{4}{2} \left(8\pi + \sqrt{3} \right)$ (A) $\frac{4}{3} \left(4\pi - \sqrt{3} \right)$ (B) $\frac{4}{3} \left(4\pi + \sqrt{3} \right)$ (C) $\frac{4}{3} \left(8\pi - \sqrt{3} \right)$

76.

89.	The area bounded by the	the y-axis, $y = \cos x$ and	$y = \sin x$, when $0 \le x \le \frac{\pi}{4}$	is
	(A) $2(\sqrt{2}-1)$	(B) $\sqrt{2} - 1$	(C) $\sqrt{2} + 1$	(D) $\sqrt{2}$
90.	The area of the region	bounded by the curve	$x^2 = 4y$ and the straight line	x = 4y - 2, is
	(A) $\frac{3}{8}$ sq.units	(B) $\frac{5}{8}$ sq.units	(C) $\frac{7}{8}$ sq.units	(D) $\frac{9}{8}$ sq.units
91.	Area of the region in $x^2 + y^2 = 32$, is	the first quadrant en	closed by the x-axis, the	line y=x and the circle
	(A) 16π sq.units	(B) 4π sq.units	(C) 32π sq.units	(D) 24π sq.units
92.	The area of the region	bounded by parabola y	$x^2 = x$ and the straight line x^2	2y = x, is
	(A) $\frac{4}{3}$ sq.units	(B) 1 <i>sq.units</i>	(C) $\frac{2}{3}$ sq.units	(D) $\frac{1}{3}$ sq.units
93.	The area of the region	bounded by the curve	$y = \sin x$ between the coor	dinates $x = 0, x = \frac{\pi}{2}$ and
	the x-axis, is (A) 2 sq. units	(B) 4 sq. units	(C) 3 sq. units 2	(D) 1 sq. units
94.	The area of the region	bounded by the ellipse	$\frac{x^2}{25} + \frac{y^2}{16} = 1$, is	
95.	(A) $20\pi \ sq.units$ The area of the region	(B) $20\pi^2$ sq.units bounded by the curve f	(C) 3π sq.units x = 2y + 3 and the y lines. y	(D) $4\pi \ sq.units$ =1 and y = -1, is
	(A) 4 sq. units	(B) $\frac{3}{2}$ sq.units	(C) 6sq.units	(D) 8 sq.units
96.	The equation of the cur	ve whose tangent at an	y point (x, y) makes an ang	gle $\tan^{-1}(2x+3y)$ with
	x-axis and which passe	es through $(1,2)$ is		
	(A) $6x + 9y + 2 = 26e^{3(x+y)}$	x-1)	(B) $6x - 9y + 2 = 26e^{3(x-1)}$)
	(C) $6x + 9y - 2 = 26e^{3(x-1)}$	x-1)	(D) None of these	
97.	Solution of the different	ntial equation $(x+2y^3)$	$\frac{dy}{dx} = y$ is	
	$(\mathbf{A}) \ x = y^2 \left(c + y^2 \right)$	$(\mathbf{B}) \ x = y\left(c - y^2\right)$	(C) $x = 2y(c - y^2)$	$(D) \ x = y(c + y^2)$
98.	The equation of a curve	e passing through $\left(1, \frac{\pi}{4}\right)$	$\left(- \right)$ and having slope $\frac{\sin 2y}{x + \tan x}$	$\frac{y}{y}$ at (x, y) is
	(A) $x = \tan y$	(B) $y = \tan x$	(C) $x = 2 \tan y$	(D) $y = 2 \tan x$
99.	The equation of the cur	ve satisfying the equation	tion $(1+y^2)dx + (x-e^{-\tan^{-1}y})$	dy = 0 and passing
	through origin is		1	
	(A) $x.e^{\tan^{-1}y} = \cot^{-1}y$		(B) $x.e^{\cot^{-1}y} = \cot^{-1}y$	
	(C) $y \tan^{-1} x = \tan^{-1} x$		(D) $x \cdot e^{\tan^{-1} y} = \tan^{-1} y$	
100.	The general solution of	f the differential equation	$\int \frac{dy}{dx} = y \tan x - y^2 \sec x \text{ is}$	
	(A) $\tan x = (c + \sec x) y$	v	(B) $\sec y = (c + \tan y)x$	
	(C) $\sec x = (c + \tan x) y$,	(D) none of these	

101. The differential equation of rectangular hyperbolas whose axes are asymptotes of the hyperbola $x^2 - y^2 = a^2$. is

(A)
$$y\frac{dy}{dx} = x$$
 (B) $x\frac{dy}{dx} = -y$ (C) $x\frac{dy}{dx} = y$ (D) $xdy + ydx = dx$

102. If sin x is an integrating factor of the differential equation $\frac{dy}{dx} + Py = Q$, then P can be

(A) $\log \sin x$ (B) $\cot x$ (C) $\sin x$ (D) $\log \cos x$ 103. The slope of the tangent at (x, y) to a curve passing through $\left(1, \frac{\pi}{4}\right)$ is given by $\frac{y}{x} - \cos^2 \frac{y}{x}$, then the equation of the curve is

(A)
$$y = x \tan^{-1} \left[\log \left(\frac{e}{x} \right) \right]$$

(B) $y = x \tan^{-1} \left[\log \left(\frac{x}{e} \right) \right]$
(C) $y = \tan^{-1} \left[\log \left(\frac{e}{x} \right) \right]$
(D) none of these

104. The equation of a curve passing through (0,1) and having gradient $\frac{-(y+y^3)}{1+x+xy^2}$ at (x, y) is

(A)
$$xy + \tan^{-1} y = \frac{\pi}{2}$$

(B) $xy + \tan^{-1} y = \frac{\pi}{4}$
(C) $xy - \tan^{-1} y = \frac{\pi}{2}$
(D) $xy - \tan^{-1} y = \frac{\pi}{4}$

105. The integrating factor of the differential equation $\frac{dy}{dx}(x \log x) + y = 2 \log x$ is given by (A) $\log(\log x)$ (B) e^x (C) $\log x$ (D) x

106. The differential equation of family of curves whose tangent are inclined at an angle of $\frac{\pi}{4}$ with the hyperbola xy = 4 is :

(A)
$$\frac{dy}{dx} = \frac{x^2 + 4}{x^2}$$
 (B) $\frac{dy}{dx} = \frac{x^2 - 4}{x^2 + 4}$ (C) $\frac{dy}{dx} = \frac{x^2 - 4}{x^2}$ (D) None of these

- 107. The tangent at any point P of a curve meets x-axis in T. The curve for which OP = PT is a :(A) parabola(B) ellipse(C) hyperbola(D) circle
- 108. Equation of the curve passing through the point (1,2) such that the intercept on the *x*-axis cut off between the tangent and origin is twice the abscissa is given by :
 (A) xy = 2
 (B) xy = 1
 (C) xy = 2y
 (D) xy = 2x

109. A normal at any point (x, y) to the curve y = f(x) cuts a triangle of unit area with the axis, the differential equation of the curve is

(A)
$$y^{2} - x^{2} \left(\frac{dy}{dx}\right)^{2} = 4 \frac{dy}{dx}$$
 (B) $x^{2} - y^{2} \left(\frac{dy}{dx}\right)^{2} = \frac{dy}{dx}$
(C) $y^{2} \left(\frac{dy}{dx}\right)^{2} + 2(xy-1)\frac{dy}{dx} + x^{2} = 0$ (D) $x + y \left(\frac{dy}{dx}\right) = y$
110. The solution of $(x^{3} - 3xy^{2})dx = (y^{3} - 3x^{2}y)dy$
(A) $y^{2} - x^{2} = c(x^{2} + y^{2})^{2}$ (B) $y^{3} - x^{3} = c(x^{2} + y^{2})$
(C) $y^{2} + x^{2} = c(x^{2} - y^{2})$ (D) $y^{3} + x^{3} = c(x^{2} - y^{2})$

111.	. The orthogonal trajectories of the family of curves $a^{n-1}y = x^n$ are give by			
	(A) $x^n + n^2 y = \text{constant}$	nt	(B) $ny^2 + x^2 = \text{constant}$	nt
	(C) $n^2 x + y^n = \text{constant}$	t	(D) $n^2 x - y^n = \text{constant}$	nt
112.	I.F of $x \frac{dy}{dx} + y(1+x) =$	-1		
	(A) $x.e^{x}$	(B) $\frac{e^x}{x}$	(C) $x + \log x$	(D) $x \log x$
113.	The general solution of	f the differential equation	on $ydx - (x+2y^2)dy =$	0
	$(A) y = 2x^2 + cx$	$(B) x = 2y^2 + cy$	(C) $x^2 = y^2 + cy$	(D) $y = x^2 + c$
114.	The solution of $\frac{xdx + y}{ydx - x}$	$\frac{ydy}{xdy} = \frac{x\sin\left(x^2 + y^2\right)}{y^3}$ is		
	(A) $\log \left \tan \left(x^2 + y^2 \right) \right =$	$=\frac{x^2}{y^2}+c$	(B) $\log \left \tan \left(\frac{x^2 + y^2}{2} \right) \right $	$=\frac{x^2}{y^2}+c$
	(C) $\log \left \tan \left(x^2 + y^2 \right) \right =$	$=\frac{y^2}{x^2}+c$	(D) $\log \left \tan \left(\frac{x^2 + y^2}{2} \right) \right $	$=\frac{y^2}{x^2}+c$
115.	The solution of $\frac{dy}{dx} = 1$	$-x(y-x)-x^3(y-x)^3$	is	
	(A) $(y-x)^2(x^2+1+cx)$	$x^2 = 1$	(B) $(y-x)^2(x^2+1+a)$	$e^{x^2} = 1$
	(C) $(y-x)^2 (x^2-1+cx)^2 (x^2$	$(z^2) = 1$	(D) $(y-x)^2(-x^2-1+$	$-ce^{x^2})=1$
116.	A solution differential	equation $\frac{dy}{dx} = \frac{1}{xy(x^2 \sin x)}$	$\frac{1}{(C \text{ is arbitrary})}$ (C is arbitrary	constant)
	(A) $x^2 \left(\cos y^2 - \sin $	$-2ce^{-y^2})=2$	$(\mathbf{B}) \ y^2 \Big(\cos x^2 - \sin y^2 \Big)$	$\left(2-2ce^{-y^2}\right)=2$
	(C) $y^2 \left(\cos y^2 - \sin y^2 - \sin y^2\right)$	$-e^{-y^2}$) = 4	(D) $y^2 (\cos y^2 - \sin x^2)$	$\left(e^{y^2}+e^{y^2}\right)=2$
117.	Solve $x\frac{dy}{dx} + y = x^3 y^6$			
	(A) $y^{-5}x^5 = \frac{5}{2}x^{-2} + c$	(B) $y^5 x^5 = \frac{5}{2}x^2 + c$	(C) $y^{-5}x^5 = \frac{5}{2}x^2 + c$	(D) $y^5 x^5 = \frac{5}{2}x + c$
118.	Solution of the equation	n $x dy = \left(y + x \frac{f\left(\frac{y}{x}\right)}{f\left(\frac{y}{x}\right)} \right)$	dx is	
	(A) $f\left(\frac{x}{y}\right) = cy$	(B) $f\left(\frac{y}{x}\right) = cx$	(C) $f\left(\frac{y}{x}\right) = cxy$	(D) None of these
119.	The solution of $\frac{dy}{dx} = \frac{x}{dx}$	$\frac{x^2 + y^2 + 1}{2xy}$, satisfying y	(1)=0 is given by	
	(A) a hyperbola	(B) a circle	(C) $y^2 = x(1+x)-10$	(D) $(x-2)^2 + (y-3)^2 = 5$

- 120. Solution of the equation $x dx + y dy + \frac{x dy y dx}{x^2 + y^2} = 0$ is
 - (A) $y = x \tan\left(\frac{c + x^2 + y^2}{2}\right)$ (B) $x = y \tan\left(\frac{c + x^2 + y^2}{2}\right)$ (C) $y = x \tan\left(\frac{c - x^2 - y^2}{2}\right)$ (D) None of these
- 121. The solution of the differential equation, $2x^2y\frac{dy}{dx} = \tan(x^2y^2) 2xy^2$ given $y(1) = \sqrt{\frac{\pi}{2}}$ is (A) $\sin(x^2y^2) = e^{x-1}$ (B) $\sin(x^2y^2) = x$ (C) $\cos(x^2y^2) + x = 0$ (D) $\sin(x^2y^2) = e \cdot e^x$
- 122. Solution of the differential equation $(e^{x^2} + e^{y^2})y\frac{dy}{dx} + e^{x^2}(xy^2 x) = 0$ (A) $e^{x^2}(y^2 - 1) + e^{y^2} = C$ (B) $e^{y^2}(x^2 - 1) + e^{x^2} = C$ (C) $e^{y^2}(y^2 - 1) + e^{x^2} = C$ (D) $e^{x^2}(y - 1) + e^{y^2} = C$
- 123. A ray of light coming from origin after reflection at the point P(x, y) of any curve becomes parallel to x-axis, if the curve passes through (8, 6) then its equation is (A) $y^2 = x$ (B) $y^2 = 4x + 4$ (C) $y^2 = 4x$ (D) $y^2 = 4x + 1$
- 124. Consider the differential equation $y^2 dx + \left(x \frac{1}{y}\right) dy = 0$. if y(1) = 1, Then x is given by:

(A)
$$4 - \frac{2}{y} - \frac{e^{\frac{1}{y}}}{e}$$
 (B) $3 - \frac{1}{y} - \frac{e^{\frac{1}{y}}}{e}$ (C) $1 + \frac{1}{y} - \frac{e^{\frac{1}{y}}}{e}$ (D) $1 - \frac{1}{y} + \frac{e^{\frac{1}{y}}}{e}$

125. If $x \frac{dy}{dx} = y(\log y - \log x + 1)$, then the solution of the equation is

(A)
$$y \log\left(\frac{x}{y}\right) = cx$$
 (B) $x \log\left(\frac{y}{x}\right) = cy$ (C) $\log\left(\frac{y}{x}\right) = cx$ (D) $\log\left(\frac{x}{y}\right) = cy$

PHYSICS

Syllabus: MAGENETISM AND OPTICS:- 1. MAGNETISM AND MATTER, 2. RAY OPTICS, 3. WAVE OPTICS.

1. In a double slit experiment, 5^{th} dark fringe is formed opposite to one of the slits. The wavelength of light is

(A)
$$\frac{d^2}{6D}$$
 (B) $\frac{d^2}{5D}$ (C) $\frac{d^2}{15D}$ (D) $\frac{d^2}{9D}$

2. If the amplitude ratio of two sources producing interference is 3 : 5, the ratio of intensities at maxima and minima is

- 3. In Young's double slit interference experiment, the slit separation is made 3 fold. The fringe width becomes
 - (A) 1/3 times (B) 1/9 times (C) 3 times (D) 9 times
- 4. In a certain double slit experiment arrangement interference fringes of width 1.0 mm each are observed when light of wavelength 5000 Å is used. Keeping the set up unaltered, if the source is replaced by another source of wavelength 6000Å, the fringe width will be
 (A) 0.5 mm
 (B) 1.0 mm
 (C) 1.2 mm
 (D) 1.5 mm

- 5. In Young's double slit experiment, if one of the slits is closed fully, then in the interference pattern
 - (A) The single diffraction pattern may be observed on screen
 - (B) The bright fringes will become more bright
 - (C) The bright fringes will become fainter
 - (D) The intensity on screen will keep changing with time
- 6. In two separate set-ups of the Young's double slit experiment, fringes of equal width are observed when lights of wavelengths in the ratio 1 : 2 are used. If the ratio of the slit separation in the two cases is 2 : 1, the ratio of the distance between the plane of the slits and the screen in the two set-ups is
 - (A) 4:1 (B) 1:1 (C) 1:4 (D) 2:1
- 7. In a Young's double slit experiment the intensity at a point where the path difference is $\frac{\lambda}{6}$ (λ

being the wavelength of the light used) is I. If I₀ denotes the maximum intensity, $\frac{I}{I_0}$ is equal to

(A)
$$\frac{1}{\sqrt{2}}$$
 (B) $\frac{\sqrt{3}}{2}$ (C) 12 (D) $\frac{3}{2}$

8. In Young's double slit experiment, a mica slit of thickness t and refractive index μ is introduced in the ray from the first source S₁. By how much distance the fringes pattern will be displaced

(A)
$$\frac{d}{D}(\mu - 1)t$$
 (B) $\frac{D}{d}(\mu - 1)t$ (C) $\frac{d}{(\mu - 1)D}$ (D) $\frac{D}{d}(\mu - 1)$

9. A monochromatic beam of light on YDSE apparatus at some angle (say θ) as shown in fig. A thin sheet of glass is inserted in front of the lower slit S₂. The central bright fringe (path difference = 0) will be obtained

(A) At O (B) Above O

(D) Anywhere depending on angle θ , thickness of plate t and refractive index of glass μ

10. In a Young's double slit experiment, the fringe pattern is observed on a screen placed at a distance D. The slits are separated by 'd' and are illuminated by light of wavelength λ . The distance from the central point where the intensity falls to half the maximum is

(A)
$$\frac{\lambda D}{3d}$$
 (B) $\frac{\lambda D}{2d}$ (C) $\frac{\lambda D}{d}$ (D) $\frac{\lambda D}{4d}$

11. In an interference pattern produced by two identical slits, the intensity at the site of the central maximum is 'I'. The intensity at the same spot when either of the two slits is closed is I_0 . The correct relation between I and I_0 is (A) $I = I_0$ (B) $I = 2I_0$ (C) $I = 4I_0$ (D) I & I_0 are not related

(A) $I = I_0$ (B) $I = 2I_0$ (C) 12. The wave front is a surface in which:

- (A) all points are in the same phase
- (B) there is a pair of points in opposite phase
- (C) there is a pair of points with phase difference $(\pi/2)$
- (D) there is no relation between the phases
- 13. When interference of light takes place:
 - (A) energy is created in the region of maximum intensity
 - (B) energy is destroyed in the region of maximum intensity
 - (C) conservation of energy holds good and energy is redistributed
 - (D) conservation of energy does not hold good

<u>SECTION-II</u> (Numerical Value Answer Type)

14.	In a biprism experiment	nt, if the wavelength of	of red light used is 6.	$5 \times 10^{-7} m$ and that of green is
	$5.2 \times 10^{-7} m$, the value	of n for which $(n+1)$) th green bright band	coincides with n^{th} red bright
	band for the same setting	ng is given by:	, ,	
	(A) 2	(B) 3	(C) 4	(D) 1
15.	A double slit is illumin	ated by two waveleng	ths 450 nm and 600 m	m. What is the lowest order at
	which the maxima of o	ne wavelength coincid	es with the minima of	the other wavelength?
	(A) 1	(B) 2	(C) 3	(D) 4
16.	The maximum number	er of possible interfe	erence maxima for sl	lit-separation equal to twice
	wavelength in Young's	double-slit experiment	it is:	
	(A) ∞	(B) 5	(C) 3	(D) 0
17	A beam of light of way	velength 500 nm from	a distant source falls o	on a single slit of width $\frac{1000}{1000}$
17.	A beam of light of way	verengui 500 mii itom	a distant source fails ($\frac{1}{\sqrt{3}}$
	nm. Width of central m	aximum on a screen 1	.5 m away from the sli	t will be:
	(A) 2 m	(B) 3.15 m	(C) 2.6 m	(D) 5.2 m
18.	In Young's double slit	experiment the angula	ar width of a fringe for	med on a distant screen is 1°.
	The moveler of light	$\frac{1}{2}$	ana aina hatusaan tha a	lite is annovine stale.
	The wavelength of light (Λ) 1 mm	$(\mathbf{P}) = 0.05 \text{ mm}$	(C) 0.03	(D) 0.01 mm
10	(A) I IIIII The width of a single	(B) 0.05 IIIII	(C) 0.05	(D) 0.01 mm
19.	wavelength 6980Å is		inium is observed at	all alight 2 with a light of
	(A) 0.2 mm	(B) 2×10^{-5} mm	(C) 2×10^5 mm	(D) 0.02 mm
20.	What changes on polar	ization of light?	(0) =	(2) 0.02
	(A) intensity	(B) phase	(C) frequency	(D) wavelength
21.	The diffraction pattern	of a single slit		
	(A) band are uniformly	bright	(B) bands are uniform	nly wide
	(C) central band is narr	rower	(D) central band is w	ider
22.	When unpolarised light	t beam is incident from	air onto glass ($n = 1.5$	5) at the polarizing angle
	(A) reflected beam is p	olarized 100 percent		
	(B) reflected and refrac	ted beams are partially	y polarised	
	(C) the reason for (1) is	s that almost all the lig	ht is reflected	
	(D) all of the above.			
23.	A single slit of width <i>c</i>	i is illuminated by vio	let light of wavelength	1 400 nm and the width of the
	diffraction pattern is n	heasured as y. When I	half of the slit width i	s covered and illuminated by
	yellow light of waveler	igth 600 nm, the width	of the diffraction patte	ern is
	(A) the pattern vanishe (C) 2	s and the width is zero		$(\mathbf{B}) \mathbf{y}/3$
24	(C) $3y$		N	(D) none of these 45°
24.	Two polaroids are kept	crossed to each other.	Now one of them is ro	h the system is
	The percentage of unpoint (Λ) 150/	(\mathbf{D}) 25%	(C) 50%	in the system is $(D) \in \Omega^{(1)}$
25	(A) 13% Delarization of light to	$(\mathbf{D}) 23\%$	(C) J0%	(D) 00%
25.	polarization?	ikes place due to man	y processes. which of	the following will not cause
	(A) reflection	(B) Polaroid sheet	(C) scattering	(D) diffraction
26.	In diffraction from a sin	ngle slit, the angular w	idth of the central max	imum does not depend on:
	(A) wavelength of light	t used	(B) width of slit	
	(C) distance of slit from	n screen	(D) ratio of λ and slit	width
27.	The axes of a polarizer a	and an analyzer are orien	nted at right angles to ea	ch other. A third Polaroid sheet
	is placed between them	with its axis at 45° to	the axes of the polariz	er and analyzer. If unpolarized
	light of intensity I ₀ is inc	cident on this system, w	hat is the intensity of the	e transmitted light?
	(A) 0.125 I ₀	(B) 0.250I ₀	(C) 0.500 I ₀	(D) 0.375 I ₀ .

28.	Polarized light of inten	sity I ₀ is incident on a	pair of Polaroid sheets	s. Let θ_1 and θ_2 be the angles
	between the incident a intensity of the transmi	amplitude and the axe tted light is	es of the first and sec	cond sheet, respectively. the
	(A) $I = I_0 \sin^2 \theta_1 \cos^2 (\theta_1)$	$(\theta_1 - \theta_2)$	(B) $I = I_0 \cos^2 \theta_1 \cos^2 \theta_2$	$(\theta_1 - \theta_2)$
	(C) $I = I_0 \sin^2 \theta_1 \sin^2 (\theta$	$_1 - \theta_2$)	(D) none of these	
29.	Which of the following	cannot be polarized?		
30.	(A) Ultraviolet rays Two beams of light hav	(B) Ultrasonic waves ving intensities I and 4	(C) X-rays I interfere to produce	(D) Radio waves a fringe pattern on the screen.
	Phase difference betw	een the beams is $\frac{\pi}{2}$	at point A and π a	t point B. The difference in
	intensities of resulting	light at points A and B	is	
31.	(A) 3 I In a single slit diffract	(B) 4 I ion pattern the angula	(C) 5 I r width of a central m	(D) 6 I haxima is 30° when the slit is
	illuminated by light of	wavelength 6000 \AA . T	Then width of the slit w	vill be approximately given as:
	(A) 12×10^{-6} m	(B) 12×10^{-7} m	(C) 12×10^{-8} m	(D) 12×10^{-9} m
32.	An unpolarized beam such a way that plane percentage of incident	of light is incident on e of rotation of one i light transmitted by fir	a group of three pola make an angle of 60° st polarizer will be	arizing sheets are arranged in with the adjacent one. The
	(A) 6.25 %	(B) 12.5 %	(C) 50 %	(D) None of these
33.	First diffraction minim light used is:	a due to a single slit o	of width 1.0×10^{-5} cm	is at 30°. Then wavelength of
	(A) $400 \overset{0}{\text{A}}$	(B) $500 \overset{0}{\text{A}}$	(C) $600 \overset{0}{\text{A}}$	(D) $700 \overset{0}{\text{A}}$
34.	A Polaroid examines	two adjacent plane-j	polarised light beams	A and B whose planes of
	polarization are mutual	lly at right angles. In c	one position of the Pol	aroid, the beam B shows zero
	intensity. From this po	sition a rotation of 30 ⁰	shows the two beams	of equal intensities. The ratio
	of intensity $\frac{I_A}{I_B}$ is			
	(A) 1 : 9	(B) 9 : 1	(C) 1 : 3	(D) 3 : 1
35.	Two 'crossed' polaroid Polaroid C is places w Polaroid A. If the inter emerging from Polaroid	ls A and B are placed hose polarization axis usity of light emerging d B is	in the path of a light-b makes an angles θ wi from the polaroid A i	eam. In between these, a third th the polarization axis of the s I_0 , then the intensity of light
	(A) $\frac{1}{4}I_0\cos^2(2\theta)$	$(\mathbf{B}) \ \frac{1}{4} I_0 \sin^2\left(2\theta\right)$	(C) $\frac{1}{2}I_0\cos^2(2\theta)$	(D) $\frac{1}{2}I_0\sin^2(2\theta)$
36.	A transparent thin pla between their axes is 3 be in the ratio is	te of a polaroid is p 0°. The intensities of	laced on another simi the emergent and the u	lar plate such that the angle inpolarized incident light will
	(A) 1 : 4	(B) 1 : 3	(C) 3 : 4	(D) 3 : 8
37.	Light is incident on a	glass surface at pola	rizing angle of 57.5°.	Then the angle between the
	incident ray and the ref (A) 57 5°	racted ray is (B) 115°	(C) 205°	(D) 145°
38.	The velocity of light in	air is $3 \times 10^8 \text{ms}^{-8}$ and	I that in water is $2.2 \times$	10^8ms^{-1} . The polarizing angle
	of incidence approximation	ately is		
	(A) 45°	(B) 50°	(C) 53.74°	(D) 63°
		<u>SECI</u>		

	the resulting diffracti	on pattern is observed	l on a screen 2m a	way. The distance between the fir	st
	(A) 1.2 mm	(B) 1.8 mm	(C) 2.4 mm	(D) None of these	
40.	Light of wavelength	$6000 \stackrel{0}{\text{A}}$ is incident on	a single slit. First i	minimum is obtained at a distance of	of
	0.4 cm from the centre	e. If width of the slit is	0.3 mm, then distan	ce between slit and screen will be:	
	(A) 1.0 m	(B) 1.5m	(C) 2.0 m	(D) 2.3 m	
41.	Two linear polarizers	are crossed at an ang	le of 60°. The frac	tion of intensity of light transmitte	ed
	by the pair is	-			
	(A) 0.25	(B) 0.125	(C) 0.375	(D) 0.5	
42.	A beam of natural lig	ght falls on a system c	of 5 Polaroid's, wh	hich are arranged in succession suc	:h
	that the pass axis of	each Polaroid is turne	through 60° wit	h respect to the preceding one. If	ıe
	fraction of the incider	nt light intensity that p	asses through the s	System 1s	
12	(A) 0.015625	(B) 0.03125	(C) 0.008	(D) 0.001953125	
43.	A polarizer and an a	haryzer are oriented s	o that the maximu	$\frac{1}{10}$ fight is transmitted. What is the	ie
	$(\Lambda) 0.75$	$(\mathbf{D})_{1,2,2,2,2}$	$(C) 0 \epsilon$	(D) 1 667	
11	(A) 0.75 The work functions	(D)1.3333	(C) 0.0	(D) 1.007 If light of frequencies f and 2f as	ra
44.	incident on the surfa	of filetal A and B respe	in the fatio 1.2.	If fight of frequencies f and 2f and the maximum kinetic energies (
	nhotoelectrons emitte	d is (f is greater than	threshold frequence	$c_{\rm X}$ of A 2 <i>f</i> is greater than threshold	л Ы
	frequency of B)	tu is () is greater than	threshold hequely	cy of A, 2j is greater than theshol	lu
	$(A) 1 \cdot 1$	(B) $1 \cdot 2$	$(C) 1 \cdot 3$	(D) $1 \cdot 4$	
45	A Polaroid is placed	at 45° to an incomin	o Polarized light of	of intensity I_0 Find the intensity of	ъf
10.	light passing through	Polaroid after polariza	ation.	of monory 10. I me the monorty (,,
	(\mathbf{A}) I ₀	(B) $\frac{I_0}{I_0}$	(C) $\frac{I_0}{I_0}$	(D) $\frac{I_0}{I_0}$	
	(1-1)-0	2	3	4	
46.	The critical angle of a	a certain medium is sin	$n^{-1}\left(\frac{3}{5}\right)$. The polarized	zing angle of the medium is	
	(A) $\sin^{-1}\left(\frac{4}{5}\right)$	(B) $\tan^{-1}\left(\frac{5}{3}\right)$	(C) $\tan^{-1}\left(\frac{3}{4}\right)$	(D) $\tan^{-1}\left(\frac{4}{3}\right)$	
47.	A ray of light is in	cident on the surface	of a glass plate	at an angle of incidence equal t	to
	Brewster's angle ϕ . It	f μ represents the refra	active index of gla	ss with respect to air, then the angle	le
	between reflected and	l refracted rays is	C		
	$(\Lambda) 00^{0} + \Lambda$	$(\mathbf{D}) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right)$	$(C) 00^{0}$	(D) $\cos^0 \cdot \sin^0 \phi$	
	(A) 90 $\pm \varphi$	(b) $\sin (\mu \cos \varphi)$	(C) 90	(D) 90 - sin $\left(\frac{-\mu}{\mu}\right)$	
48.	Polarization of light	takes place due to ma	any processes. Wh	hich of the following will not cause	se
	polarization?		51	6	
	(A) reflection	(B) Polaroid sheet	(C) scattering	(D) diffraction	
		(Numerical Val	<u>lue Answer Type)</u>		
49.	Two linear polarizers	are crossed at an ang	le of 60°. The frac	tion of intensity of light transmitte	d
	by the pair is				
	(A) 0.25	(B) 0.125	(C) 0.375	(D) 0.5	
50.	A beam of natural lig	ght falls on a system	of 5 polaroids, wh	ich are arranged in succession suc	:h
	that the pass axis of	each Polaroid is turne	ed through 60° wit	h respect to the preceding one. Th	ıe
	nearest fraction of the	e incident light intensit	ty that passes throu	igh the system is	
- 1	(A) 0.015	(B) 0.031	(C) 0.004	(D) 0.002	
51.	For what distance is	ray optics a good app	proximation when	the aperture is 4 mm wide and th	ne
	wavelength is 400 nm	$(\mathbf{P}) 40.0 m$	(C) 20.0 m	(D) 50.0 m	
	(A) 20.0 m	(D) 40.0 m ((C) 30.0 m	(U) 30.0 III	

39. A beam of light of wavelength 600 nm from a distant source falls on a single slit 1mm wide and

CHEMISTRY

Syllab	us: <u>SECOND YEAR PHY</u>	<u> SICAL CHEMISTRY:-</u> 1. S	SOLID STATE, 2. SOLUTIO	DNS <mark>,</mark>	
	3. ELECTRO CHEIMI	STRY AND CHEMICAL KI	NETICS 4.SURFACE CHEI	VIISTRY	
1.	Which of the following	ng statement is correct	?		
	If $E_{Cu^{2+} Cu}^{\circ} = 0.337 V$	and $E_{Sn^{2+} Sn}^{\circ} = -0.13$	6 V.		
	(A) Cu^{2+} ions can be	reduced by H ₂ (g)	(B) Cu can be oxidiz	ed by H ⁺	
	(C) Sn^{2+} ions can be	reduced by H ₂	(D) Cu can reduce Si	n^{2+}	
2.	The reduction potenti	al of hydrogen half-ce	ell will be negative if		
	(A) $p(H_2) = 1$ atm and (C) $p(H_2) = 2$ atm and	d[H'] = I M	(B) $p(H_2) = 1$ atm and (D) $p(H_2) = 2$ atm and	$d[H^{+}] = 2 M$	
2	(C) $p(H_2) = 2$ atm and Γ°	I[H] = I M	(D) $p(H_2) = 2$ atm an	$\mathbf{u} [\mathbf{H}] = 2 \mathbf{M}$	
5.	II $E_{\text{Fe}^{3+} \text{Fe}}$ and $E_{\text{Fe}^{2+} \text{Fe}}$	$(\mathbf{R}) + 0.77 \text{ V}$	(C) = 0.916 V	(D) + 0.016 V	
4	(A) = 0.77 v Consider the cell pote	$(\mathbf{D}) + 0.77 \mathbf{v}$	(C) = 0.910 V	(D) + 0.910 V	
	$E_{Mg^{2+} Mg}^{\circ} = -2.37 \text{ V a}$	and $E_{Fe^{3+} Fe}^{\circ} = -0.036$ V	Ι.		
	The best reducing age	ent among them would	lbe		
_	(A) Mg^{2+}	(B) Fe^{3+}	(C) Mg	(D) Fe	
5.	-1.18 V respectively.	on potential values of t The order of reducing	hree metallic cations, 2 g power of the correspo	X, Y and Z are $0.52, -3.03$ and onding metals is	
	(A) Y > Z > X	(B) $X > Y > Z$	(C) $Z > Y > X$	(D) Z > X > Y	
6.	The standard reduction	on potentials of Cr^{3+} C	Cr^{2+} and $\operatorname{Cr}^{3+} $ Cr are -4	0.41 V and -0.74 V	
	respectively. The star	dard electrode potenti	als of Cr^{2+} Cr half–ce	ell is	
7	(A) + 1.81 V The emf of the series	(B) - 1.81 V	(C) + 0.9 V	(D) = 0.9 V	
1.	$Z_n(s) \mid Z_n^{2+} (0.10 \text{ M})$	$ \mathbf{KC} $ (saturated) $ \mathbf{Zn}^2 $	$^{2+}(1.0 \text{ M}) \mid \mathbf{Zn}(s)$		
	(A) zero	(B) 0.0592 V	(C) -0.0296 V	(D) 0.0296 V	
8.	At $pH = 2$, $E_{Quinhydroe}^{\circ}$	= 1.30 V, $E_{Quinhydrone}$ V	will be [Assume that th	e concentration of	
	hydroquinone and qu	inone is (1M)]			
		ဝူ	он		
	$+ 2H^+ + 2e^- \longrightarrow$				
	(A) 1 36 V	(B) 1 30 V	(C) 1 418 V	(D) 1 20 V	
9.	$Zn Zn^{2+} (c_1 M) Zn^{2+}$	$^{(1)}(c_2 M) Zn$	(0) 1.410 V	(D) 1.20 V	
	For this cell, ΔG wou	ld be negative, if			
	(A) $c_1 = c_2$	(B) $c_1 > c_2$	(C) $c_2 > c_1$	(D) None of these	
10.	The oxidation potenti	al of a hydrogen elect	rode at $pH = 10$ and P_{H}	$H_2 = 1$ atm, would be	
	(A) 0.51 V	(B) 0.00 V	(C) + 0.59 V	(D) 0.059 V	
11.	A student made the fe	ollowing observations	in the laboratory:		
	(i) Clean copper meta	al did not react with 1	molar Pb(NO ₃) ₂ solution	on	
	(ii) Clean lead metal	dissolved in a 1 molar	AgNO ₃ solution and c	rystals of Ag metal appeared	
	(III) Clean silver meta	al did not react with 1	motar $Cu(NO_3)_2$ solutions for the three metals is:	on.	
	(A) Cu Pb A σ	(B) Cu Ag Ph	(C) Ph Cu A σ	(D) Ph Ag Cu	
12.	The equivalent condu	ictance of 1 M benzoid	c acid is 12.8 ohm ⁻¹ cm	2 . If the equivalent	
	conductance of benzo	bate ion and H^+ ion are	42 and 288.42 ohm ⁻¹	cm ² respectively. Its degree of	
	dissociation is:				
	(A) 39%	(B) 3.9%	(C) 0.35%	(D) 0.039%	

13.	The time required to coat a metal surface of (density 1.05 g cm^{-3}) with the passage of 3A	80 cm ² with 5×10^{-3} cm thick layer of silver current through a silver nitrate solution is:
14.	(A) 115 sec (B) 125 sec Aluminium oxide may be electrolysed at 100 amu; 1 faraday = 96500 coulombs). The cath	(C) 135 sec (D) 145 sec 00° C to furnish aluminium metal (atomic mass = 27 node reaction is $Al^{3+} + 3e^- \rightarrow Al$
	To prepare 5.12 kg of aluminium metal by th (A) 5.49×10^7 C of electricity	(B) 1.83×10^7 C of electricity
	(C) 5.49×10^4 C of electricity	(D) 5.49×10^{10} C of electricity
15.	The $E^0(M^{3+}/M^{2+})$ values for Cr, Mn, Fe and	nd Co are -0.41, +1.57, +0.77 and +1.97
	respectively. For which one of these metals teasiest?	the change in oxidation state form $+2$ to $+3$ is
	(A) Cr (B) Mn	(C) Fe (D) Co
16.	The limiting molar conductivities Λ^0 for Na	Cl, KBr and KCl are 126, 152 and 150 S $\text{cm}^2 \text{ mol}^{-1}$
	respectively. The Λ^0 for NaBr is	
	(A) $278 \text{ S cm}^2 \text{ mol}^{-1}$ (B) $178 \text{ S cm}^2 \text{ mol}^{-1}$	(C) $128 \text{ S cm}^2 \text{ mol}^{-1}$ (D) $306 \text{ S cm}^2 \text{ mol}^{-1}$
17.	The electrical conductivity of the following	aqueous solutions is highest for
	(A) 0.1 M CH ₃ COOH	(B) 0.1 M CH ₂ FCOOH
	(C) $0.1 \text{ M CHF}_2\text{COOH}$	(D) 0.1 M CH ₂ ClCOOH
18.	Resistance of a conductivity cell filled with	a solution of an electrolyte of concentration 0.1 M
	is 100 Ω . The conductivity of this solution is	1.29 S m ⁻¹ . Resistance of the same cell when filled
	with 0.2 M of the same solution is 520Ω . The same solution is 520Ω .	he molar conductivity of 0.2 M solution of the
	electrolyte will be	
	(A) $124 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$	(B) 1240×10^{-4} S m ² mol ⁻¹
	(C) 1.24×10^{-4} S m ² mol ⁻¹	(D) $12.4 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$
19.	What is the effect of dilution on the equivale	ent conductance of strong electrolyte?
	(A) Decrease on dilution	(B) Remains unchanged
20	(C) Increase on dilution	(D) None of these
20.	For reducing 1 mol of $Cr_2O_7^{2-}$ to Cr^{3+} , char	ge required is
	(A) 3×96500 coulomb	(B) 6×96500 coulomb
01	(C) 0.3 F	(D) 0.6 F
21.	The variation of equivalent conductance of v	weak electrolyte with $\sqrt{concentration}$ is correctly
	shown in fig	
	Yı Yı	Yı Yı
	$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \downarrow \qquad \uparrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad $	
	$(A) (B) \rangle$	
		$X \qquad \underbrace{\bigvee}_{\sqrt{C}} X \qquad \underbrace{\bigvee}_{\sqrt{C}} X$

22. The specific conductance of 0.1 N KCl solution at 23^oC is 0.012 ohm⁻¹ cm⁻¹. The resistance of cell containing the solution at the same temperature was found to be 55 ohm. The cell constant will be

(A)
$$0.142 \text{ cm}^{-1}$$
 (B) 0.616 cm^{-1} (C) 6.16 cm^{-1} (D) 616 cm^{-1}

23. Specific conductance of 0.01 N solution of an electrolyte is 0.00419 ohm cm⁻¹. The equivalent conductance of this solution will be

(A) 4.18 mho cm² (B) 419 mho cm² (C) 0.0419 mho cm² (D) 0.209 mho cm²

- 24. One ampere of current is passed for 9650 second through molten AlCl₃. What is the weight in grams of Al deposited at cathode? (Atomic weight of Al = 27)
 (A) 0.9
 (B) 9.0
 (C) 0.18
 (D) 18.0
- 25. Which of the following is a reversible cell? (A) Dry cell (B) Mercury cell (C) Daniell cell (D) All of these

26.	The two half -cell rea	ctions of an electroche	mical cell is given as:	
	$Ag^+ + e^- \rightarrow Ag;$	$E^{0}_{1,+,+} = -0.3995V$		
	$Fe^{++} \rightarrow Fe^{+++} + e^{-}$	$E_{0}^{Ag/Ag} = -0.7120V$		
	The value of cell FM	F will he		
	(A) -0.3125 V	(B) 0.3125V	(C) 1 114 V	(D) -1 114 V
27	The standard reduction	on potentials for $7n^{2+}$ /	(C) 1.114 V Zn Ni ²⁺ / Ni and Fe ²⁺ /	(E) 1.114 V (Fe are $-0.76 - 0.23$ and $-$
27.	0.44 V respectively	The reaction $\mathbf{X} + \mathbf{V}^{2+}$	$\mathbf{X}^{2+} + \mathbf{Y}$ will be spont	taneous when
	(A) $X - Ni Y - Zn$	(B) $X - Fe Y - 7n$	(C) X - Zn Y - Ni	(D) $X = Ni$ $Y = Fe$
28.	Standard electrode po	(D) R = Pe, T = 2n otential of half cell read	(0) $R = 2n$, $T = 10$	
_0.	$Cu^{2+} + 2e^- \rightarrow Cu: F^0 = 1$	0 34V		
	$Zn^{2+} + 2e^- \rightarrow Zn; E^0 = -$	-0.76V		
	What is the EMF of the	he cell ?		
	(A) +1.10 V	(B) – 1.10 V	(C) – 0.42 V	(D) + 042 V
29.	Given the following i	n equation (i) and (ii)	calculate the EMF of th	ne cell given in equation (iii)
	$\operatorname{CuI}_{(s)} + e^{-} \rightarrow \operatorname{Cu}_{(s)} + I^{-}$	$E^{0} = -0.16$	(i)	
	$Zn_{(ac)}^{(3)} + 2e^{-} \rightarrow Zn_{(c)}^{(3)}; E^{(c)}$	$^{0} = -0.76$	(ii)	
	$\mathbf{Z}_{n} \mid \mathbf{Z}_{n}^{2+} (1 \text{ OM}) \parallel \mathbf{I}^{-} (1 \text{ OM})$	$(\mathbf{M}) = C_{\mathbf{M}} = C_{\mathbf{M}}$	(iii)	
	$\sum_{i=1}^{n} \sum_{j=1}^{n} (1.0 M_{j}) \ 1 \ (1.0$	$(\mathbf{D}) \cap \mathcal{A} \mathcal{A} \mathcal{M}$	(\mathbf{II})	$(\mathbf{D}) \cap (\mathbf{O}) \mathbf{V}$
30	(A) 1.08 V The standard reduction	(B) 0.44 V	(C) 0.92 V	(D) 0.60 V
50.	The standard reduction $7n \rightarrow 7n^{2+} + 2n^{-} \cdot \Gamma^{0}$		reactions are	
	$E \rightarrow Ee^{2+} + 2e^{-}:E^{0} = +$	+0.76v -0.41V		
	The EMF of the cell r	reaction		
	$Fe^{2+} + Zn \rightarrow Zn^{2+} + Fe$	e is		
	(A) - 0.35 V	(B) + 0.35 V	(C) +1.17 V	(D) – 1.17 V
31.	What is the standard	reduction potential (E°) for $Fe^{3+} \rightarrow Fe$?	
	Given that :	-		
	$\mathrm{Fe}^{2+} + 2\mathrm{e}^{-} \rightarrow \mathrm{Fe}; \mathrm{E}^{0}_{\mathrm{Fe}^{2+}/l}$	$_{\rm Fa} = -0.47 \rm V$		
	$Fe^{3+} + e^- \rightarrow Fe^{2+}; E^0_{Fe^{3+}}$	$_{(r_{r},2^{+})} = +0.77 V$		
	(A) + 0.057V	(B) + 0.30 V	(C) - 0.30 V	(D) - 0.057V
32.	For the following elec	ctrochemical cell at 29	8 K,	
	$Pt_{H_{1}}(1bar) H_{1}$	$(1M) M^{4+}_{(1)}, M^{2+}_{(2)} Pt_{(1)}$		
	$(s)^{-2}(g)^{-2}(g)^{-2}(g)^{-2}(aq)^$	$()^{()}(aq)^{()}(aq)^{()}(s)$		
	E 0.002W When	$\mathbf{M}_{(\mathrm{aq})}^{2+}$		
	$E_{cell} = 0.092 \text{ When} =$	$\frac{1}{M_{4+}^{4+}} = 10$		
	L			
	Given : $E^0_{M^{4+}/M^{2+}} 0.151V$	$V; 2.303 \frac{KT}{E} = 0.059 V$ the	e value of x is	
	(A) - 2	(B) - 1	(C) 1	(D) 2
33.	What pressure of H_2	would be required to m	ake emf fo the hydrog	en electrode zero in pure
	water at 25°C?	1	, ,	Ĩ
	(A) 10^{-7} atm	(B) 10^{-14} atm	(C) 1 atm	(D) 0.5atm
34.	Consider the followin	g electrolytic cells:		
	(;) $M = M^{2+} \cap M^{+}$	X^{2+} 0.01 M V		
	(1) $IVI_{(s)} IVI_{(aq)}, 0.11VI 2$	$\mathbf{A}_{(aq)}, 0.01 \text{ IVI} \mid \mathbf{A}_{(s)}$.		
	···) () (2+ 0 1) (11	X^{2+} 0 1 1 4 1 X 1		
	(11) $M_{(s)} M_{(aq)}, 0.1M $	$\mathbf{A}_{(aq)}, 0, 1\mathbf{M} \mid \mathbf{X}_{(s)}$ and		
	(iii) M $ M^{2+} = 0.01M$	$\ \mathbf{X}^{2+}_{+} \ 0 \ \mathbf{M} \ \mathbf{X}$		
	$(111)^{144}(s)^{144}(aq)^{0.01141}$	(aq), (aq), (aq)		
	(A) $E_1 > E_2 > E_3$	(B) $E_2 > E_3 > E_1$	(C) $E_3 > E_1 > E_2$	(D) $E_3 > E_2 > E_1$
				-

35. The standard reduction potential data at 25°C is given below:

$$E^{0}(Fe^{3+}, Fe^{2+}) = +0.77V; E^{0}(Fe^{2+}, Fe) = -0.44V$$

$$E^{0}(Cu^{2+}, Cu) = +0.34V; E^{0}(Cu^{+}, Cu) = +0.52V$$

$$E^{0}[O_{2(g)} + 4H^{+} + 4e^{-} \rightarrow 2H_{2}O] = +1.23V;$$

$$E^{0}[O_{2(g)} + 2H_{2}O + 4e^{-} \rightarrow 4OH^{-}] = +0.40V$$

$$E^{0}(Cr^{3+}, Cr) = -0.74V; E^{0}(Cr^{2+}, Cr) = -0.91V$$

Match E° of the redox pair in List I with the values given in List II and select the correct answer using the code given below the lists:

	List I		List II
Р.	$\mathrm{E}^{0}\left(\mathrm{Fe}^{^{3+}},\mathrm{Fe} ight)$	1.	-0.18V
Q.	$E^{0}(4H_{2}O \square \square 4H^{+} + 4OH^{-})$	2.	– 0.4 V
R.	$\mathrm{E}^{0}\left(\mathrm{Cu}^{2+}+\mathrm{Cu}\rightarrow 2\mathrm{Cu}^{+}\right)$	3.	-0.04 V
S.	${ m E}^{0}\left({ m Cr}^{^{3+}},{ m Cr}^{^{2+}} ight)$	4.	–0.83 V

(A) P-4, Q-1,R-2, S-3	(B) P-2, Q-3, R-4, S-1
(C) P-1, Q-2, R-3,S-4	(D) P-3, Q-4, R-1, S-2

36. From the following data at 25°,
$$Cr_{(aq)}^{3+} + e^- \rightarrow Ce_{(aq)}^{2+}E^0 = -0.424V$$

 $Cr_{(aq)}^{2+} + 2e^- \rightarrow Cr_{(a)}, E^0 = -0.900V$

Find E⁰ at 25°C for the reaction,
$$Cr^{3*} + 3e^- \rightarrow Cr_{(s)}$$

(A) - 0.741 V (B) - 1.324 V (C) - 0.476V (D) + 0.741 V
37. The reduction potential of hydrogen half-cell will be negative if
(A) $p(H_2)=1$ atm and $[H^+]=2.0M$ (B) $p(H_2)=1$ atm and $[H^+]=1.0M$
(C) $p(H_2)=2$ atm and $[H^+]=1.0M$ (D) $p(H_2)=2$ atm and $[H^+]=2.0M$
38. $E_{1,1}E_2$ and E_3 are the emfs of the following three galvanic cells respectively.
(i) $Zn_{(s)} |Zn^{2+}(0.1M)||Cu^{2+}(1M)||Cu_{(s)}$ (ii) $Zn_{(s)} |Zn^{2+}(1M)||Cu^{2+}(1M)||Cu_{(s)}$
(iii) $Zn_{(s)} |Zn^{2+}(1M)||Cu^{2+}(0.1M)||Cu_{(s)}$
Which one of the following is true?
(A) $E_2 > E_1 > E_3$ (B) $E_1 > E_2 > E_3$ (C) $E_3 > E_1 > E_2$ (D) $E_3 > E_2 > E_1$
39. The standard emf fo galvanic cell involving 3 moles of electrons in its redox reaction is 0.59 V.
The equilibrium constant for the reaction of the cell is
(A) 10^{25} (B) 10^{20} (C) 10^{15} (D) 10^{30}
40. The potential of a hydrogen electrode at pH = 10 is
(A) $0.59 V$ (B) $0.00 V$ (C) $0 - 0.59 V$ (D) $-0.059 V$
41. What weight of copper will be deposited by passing 2 faradays of electricity through a cupric salt?
(At. Wt. of Cu = 63.5)
(A) $2.0 g$ (B) $3.175 g$ (C) $63.5 g$ (D) $127.0 g$
42. The mass of copper that will be deposited at cathode in electrolysis of 0.2 M solution of copper sulphate when a quantity of electricity equal to that required to liberate 2.24 L of hydrogen from

(D) 12.70 g

43. 44.	The resistance of 1 N 1.15 cm ⁻¹ . The equiv (A) 4.6 The specific conduct	V solution of acetic acid alent conductance (in o (B) 9.2 ance of 0.1 M NaCl so	d is 250 oh, when meas $hm^{-1} cm^2 equiv^{-1}$) of 1 (C) 18.4 plution is 1.06×10^{-2} of	Sured in a cell of cell constant N acetic acid is (D) 0.023 nm ⁻¹ . Its molar conductance in
	$ohm^{-1} cm^2 mol^{-1} is$			
45.	(A) 1.06×10^2 The specific conduct cell containing the so will be	(B) 1.06×10^3 ance of a 0.1 N KCl so plution at the same tem	(C) 1.06×10^4 folution at 23°C is 0.012 perature was found to	(D) 53 2 ohm ⁻¹ cm ⁻¹ . The resistance of be 55 ohm. The cell constant
46.	(A) 0.142 cm ⁻¹ At infinite dilution ir	(B) 0.66 cm^{-1} the aqueous solution	(C) 0.918 cm^{-1} of BaCl ₂ , molar condu	(D) 1.12 cm^{-1} ctivity of Ba ²⁺ and Cl ⁻ ions are
	= 127.32 S cm ² /mol and 76.64 S cm ² /mol respectively. What is Λ_m^o for BaCl ₂ at same dilution?			
	(A) 280 S cm ² mol ⁻¹		(B) 330.98 S cm ⁻² mol ⁻¹	
47.	(C) 90.98 S cm ² mol ⁻¹ (D) 203.6 S cm ² mol ⁻¹ MnO ₂ is prepared by electrolysis of aqueous solution of MaSO ₄ , as per reaction			
	$Mn^{2+}_{(aq)} + 2H_2O \rightarrow MnO_{2(s)} + 2H^{+}_{(aq)} + H_{2(g)}$			
	Passing a current of 25 A for 30 hours gives on kg of MnO ₂ . What is the current efficiency? (Mol. Wt. of MnO ₂ = 87)			
	(A) 20.54%	(B) 25%	(C) 49.2%	(D) 82.16%
48.	Calculate the weight of metal deposited when a current of 15 ampere with 75% cur			
	efficiency is passed through the cell for 2 hours.			
	(Electrochemical equivalent of metal = 4×10^{-4})			
	(A) 32.4 g	(B) 43.2 g	(C) 57.6 g	(D) 16.2 g

49. K represents the rate constant of a reaction when log K is plotted against 1/T (T= temperature) the graph obtained is a

(A) Curve

- (B) A straight line with a constant positive slope
- (C) A straight line with constant negative slope
- (D) A straight line with no slope
- 50. Which of the following curves represents a 1^{st} order reaction ?

51. A chemical reaction was carried out of 300K and 280 K. The rate constants were found to be K_1 and K_2 respectively, then

(1)
$$K_2 = 4K_1$$
 (2) $K_2 = 2K_1$ (3) $K_2 = 0.25K_1$ (4) $K_2 = 0.5K_1$

52. For the reaction

$$N_2O_5 \rightarrow 2NO_2 + \frac{1}{2}O_2$$
$$\frac{-d[N_2O_5]}{dt} = k_1[N_2O_5]$$
$$\frac{d[NO_2]}{dt} = k_2[N_2O_5]$$
$$\frac{d[O_2]}{dt} = k_3[N_2O_5]$$

The relation in between k_1, k_2 and k_3 is

(A) $2k_1 = k_2 = 4k_3$ (B) $k_1 = k_2 = k_3$ (C) $2k_1 = 4k_2 = k_3$ (D) none of these 53. For the following reaction:

 $NO_{2(g)} + CO_{(g)} \rightarrow NO_{(g)} + CO_{2(g)}$, the rate law is: Rate = $k[NO_2]^2$. If 0.1 mole of gaseous CO is added at constant temperature to the reaction mixture which of the following statements is true?

(A) Both k and the reaction rate remain the same.

(B) Both k and the reaction rate increase

(C) Both k and the reaction rate decrease.

(D) Only *k* increases, the reaction rate remain the same.

54. Consider the reaction:

 $Cl_{2(aq)} + H_2S_{(aq)} \rightarrow S_{(s)} + 2H^+_{(aq)} + 2Cl^-_{(aq)}$

The rate of reaction for the reaction is

rate =
$$k[Cl_2][H_2S]$$

Which of these mechanism is/are consistent with this rate equation?

(I) $Cl_2 + H_2S \rightarrow H^+ + Cl^- + Cl^+ + HS^-(slow)$

 $Cl^+ + HS^- \rightarrow H^+ + Cl^- + S(fast)$

(II)
$$H_2S \implies H^+ + HS^-$$
 (fast equilibrium)

 $Cl_2 + HS^- \rightarrow 2Cl^- + H^+ + S(slow)$

(A) I only

(

(C) Both I and II

(D) Neither I nor II

(B) II only 55. For the reaction $C+D \rightarrow product$

> If the initial concentration of C and D is doubled, the reaction rate is increased by a factor of 32. If the concentration of D is doubled keeping that of C fixed, the reaction rate becomes 4 times. The rate law will be

A)
$$k[C]^{3}[D]^{3}$$
 (B) $k[C]^{2}[D]^{3}$ (C) $k[C]^{3}[D]^{2}$ (D) $k[C]^{2}[D]^{2}$

56. In the reaction, $P + Q \rightarrow R + S$ the time taken for 75% reaction of P is twice the time taken for 50% reaction of P. The concentration of Q varies with reaction time as shown in the fig. The overall order of the reaction is

- The time for half life period of a certain reaction $A \rightarrow$ Products is 1 hour. When the initial 57. concentration of the reaction A is 2.0 mol L^{-1} , how much time does it take for its concentration to come 0.50 to 0.25 mol L^{-1} if it is a zero order reaction? (A) 1h (B) 4h (C) 0.5 h (D) 0.25 h
- 58. AN exothermic chemical reaction proceeds in two stages:

 $R \xrightarrow{Stage I}$ Intermediate $\xrightarrow{Stage II} P$

The activation energy of stage I is 50 kJ mol⁻¹. The enthalpy change of the reaction is -100 kJ mol^{-1} . Identify the energy level diagram for the reaction.

- 59. An endothermic reaction, $A \rightarrow B$ has an activation energy as x kJ/mol. If the energy change of the reaction is y kJ, the activation energy of the reverse reaction is
- (A) x(B) x - y(C) x + y(D) y - x60. Plots showing the variation of the rate constant (k) with temperature (T) are given below. The plot that follows Arrhenius equation is

For a first order reaction $A \rightarrow P$, the temperature (T) dependent rate constant (k) was found to 61. follow the equation $\log k = -(2000)\frac{1}{T} + 6.0$. The pre-exponential factor A and the activation

energy E_a , respectively, are (A) $1.0 \times 10^6 \text{ s}^{-1}$ and 9.2 kJ mol⁻¹ (C) $1.0 \times 10^6 \text{ s}^{-1}$ and 16.6 kJ mol⁻¹

(B) 6.0 s^{-1} and 16.6 kJ mol^{-1}

- (D) $1.0 \times 10^{6} \text{ s}^{-1}$ and 38.3 kJ mol⁻¹
- Which of the following bonds determines the secondary structure of proteins ? (A) Electrovalent bond
- (C) Hydrogen bond

(B) Covalent bond (D) Coordinate bond

63. For a zero-order reaction.

(A) the reaction rate is doubled when the initial concentration is doubled.

- (B) the time for half change is half the tome taken for completion of the reaction
- (C) the time for half change is independent of the initial concentration
- (D) the time for completion of the reaction is independent of the initial concerntration

62.

64. Which of the following represent the expression for $3/4^{\text{th}}$ the life of a first-order reaction?

(A)
$$\frac{k}{2.303}\log\frac{4}{3}$$
 (B) $\frac{2.303}{k}\log\frac{4}{3}$ (C) $\frac{2.303}{k}\log 4$ (A) $\frac{2.303}{k}\log 3$

65. At the point of intersection of the two curves shown, the concentration of B is given as $(A \rightarrow nB)$

66. The chemical reaction: $2O_3 \rightarrow 3O_2$ proceeds as

$$O_{3} \xrightarrow{K_{1}} O_{2} + O \text{ (fast)},$$

$$O + O_{3} \xrightarrow{K_{3}} 2O_{2} \text{ (slow)}$$
The rate law expression will be
(A) Rate = K_{1}[O][O_{3}] (B) rate = K_{1}[O_{3}]
(C) Rate = $\frac{K_{1}K_{3}}{K_{2}} \frac{[O_{3}]^{2}}{[O_{2}]}$
(D) rate = $K_{3} \frac{[O_{3}]^{2}}{[O_{2}]}$

67. The reaction: $X(g) \rightarrow Y(g)$ follows first order kinetics. The correct graph representing the rate of formation (R) of Y(g) with time (t) is
