	M		RNATIONAL	SCHOOL			
SR N Time	NPC JEE MAINS	ASS	UNIT – II IGNMENT – 2	Date: 22-04-2020 Max. Marks:			
<mark>Sylla</mark>	<u>MATHS</u> Syllabus: <u>TRIGNOMETRY:-</u> 1. TRIGNOMETRIC RATIOS, 2. COMPOUND ANGLES, 3.MUTIPLES AND SUBMULTIPLE, 4.TRANSFORMATIONS, 5.PERIODICITY AND EXTREME VALUES, 6. TRIGNOMETRIC EQUATIONS, 7.INVERSE TRIGNOMETRIC FUNCTIONS, 8.PROPERTIES OF TRIANGLES, 9.HEIGHTS AND DISTANCES, 10.COMPLEX NUMBERS, 11. DEMOIVERSES THEOREM						
1.	Find the value of contrast $(1) 5\sqrt{13}$	$ \frac{(x/2), \text{ if } \tan x = 5/1}{(2) 5/\sqrt{26}} $	2 and x lies in third qu $(3) \frac{5}{13}$	adrant (4) $\sqrt{1/26}$			
2.	If $\tan \alpha = \frac{b}{a}, a > b > 0$	and $0 < \alpha < \frac{\pi}{4}$, then $\sqrt{\frac{a}{a}}$	$\frac{a+b}{b} - \sqrt{\frac{a-b}{a+b}}$ is equal to				
	$(1)\frac{2\sin\alpha}{\sqrt{\cos 2\alpha}}$	$(2)\frac{2\cos\alpha}{\sqrt{\cos 2\alpha}}$	$(3)\frac{2\sin\alpha}{\sqrt{\sin 2\alpha}}$	$(4) \ \frac{2\cos\alpha}{\sqrt{\sin 2\alpha}}$			
3.	The value of $\frac{\cot x}{\cot x}$	$\frac{-\tan x}{2x}$ is					
4.	(1) 1 The value of $\frac{\cot 54}{1-26}$	(2) 2 $\frac{1}{20} + \frac{\tan 20^{\circ}}{1000}$ is	(3) – 1	(4) 4			
	(1) 0 (1)	(2) 2	(3) 3	(4) 1			
5.	If $\sin A + \sin B + s$	in $C = 3$, then $\cos A +$	+ cos B + cos C is equa	al to			
6.	(1) 3 In a $\triangle ABC$, $\frac{c+b}{c-b}$. ta	(2) 2 an $\frac{A}{2}$ is equal to	(3) 1	(4) 0			
	(1) $\tan\left(\frac{A}{2}+B\right)$	$(2)\cot\left(\frac{A}{2}+B\right)$	(3) $\tan\left(A+\frac{B}{2}\right)$	(4) $\tan\left(\frac{A+B}{2}\right)$			
7.	If k be the perimete	er of the $\triangle ABC$ then	$b\cos^2\frac{C}{2} + c\cos^2\frac{B}{2}$ is e	qual to			
	(1) k	(2) 2k	(3) k/2	(4) None of these			
8.	In a $\triangle ABC$, cot $\frac{A-2}{2}$	$\frac{B}{2}$. tan $\frac{A+B}{2}$ is equal	to				
	$(1)\frac{a+b}{a-b}$	$(2)\frac{a-b}{a+b}$	$(3)\frac{a(a-b)}{b(a+b)}$	(4) None of these			
9.	In a $\triangle ABC, a^2 \cos^2$	$A=b^2+c^2$ then					
	$(1) A < \frac{\pi}{4}$	$(2)\frac{\pi}{4} < A < \frac{\pi}{2}$	$(3) A > \frac{\pi}{2}$	$(4) A = \frac{\pi}{2}$			
10.	If in a $\triangle ABC$, $\tan \frac{A}{2}$	and $\tan \frac{B}{2}$ satisfy $6x^2$	-5x+1=0. Then				
	$(1)a^2+b^2>c^2$	$(2) a^2 - b^2 = c^2$	$(3) a^2 + b^2 = c^2$	(4) $b^2 + a^2 < c^2$			
11.	In a $\triangle ABC, a=8, b$	=10 and $c = 12$. Then	C is equal to				
	(1) A/2	(2) 2A	(3) 3A	(4) A/3			

12.	In a $\triangle ABC$, $a = 5, b = 4$	and $\tan \frac{C}{2} = \sqrt{\frac{7}{9}}$. The	side c is	
13.	(1) 6 If in a $\triangle ABC, AC = 12$ (1) 1 022	(2) 3 2, $BC = 13$ and $AB = 5$, (2) 4 615	(3) 2 then the distance of A (3) 5 412	(4) 5 from BC is (4) 5 000
14.	In a $\triangle ABC$, $\cos A = \frac{3}{5}a$	and $\cos B = \frac{5}{13}$. The val	ue of cos C can be	(4) 5.000
15	(1) 0.538 If the area of a $\triangle ABC$	(2) 0.923 The 1.2 then $a^2 \sin 2B$	(3) 0.508 + $b^2 \sin 2A$ is equal to	(4) 0.908
10.	(1) 2.400	(2) 1.200	(3) 4.800	(4) 6.000
16.	If in $\triangle ABC$; $a = 8, b = 1$	$0\&c=12$. Then $\cos C$	2 =	
	(1) 0.120	(2) 0.225	(3) 0.125	(4) 0.750
17.	In $a \Delta ABC$, (c + a + b	b) $(a + b - c) = ab$. The	measure of $\angle C$ is	
	$(1)\frac{\pi}{3}$	$(2)\frac{\pi}{6}$	$(3)\frac{2\pi}{3}$	$(4) \ \frac{\pi}{4}$
18.	In $a \Delta ABC$, A : B : C (1) 2b	= 3 : 5 : 4. Then a + b (2) 2c	+ $c\sqrt{2}$ is equal to (3) 3b	(4) 3a
19.	The equation $ax^2 + bx^2$ $x^2 + \sqrt{2}x + 1 = 0$ have a (1) 90°	x + c = 0, where a, b, c a common root. The m (2) 45°	are the sides of $a \Delta AB$ easure of $\angle C$ is (3) 60°	C, and the equation $(4) 30^{\circ}$
20.	Two sides of a trian	igle are given by the	roots of the equation	$x^{2} - 2\sqrt{3}x + 2 = 0$. The angle
	between the sides is $\frac{\pi}{3}$. The perimeter of the	triangle is	
	$(1) 6 + \sqrt{3}$	$(2) 2\sqrt{3} + \sqrt{6}$	$(3) 2\sqrt{3} + \sqrt{10}$	$(4)\sqrt{10} - 2\sqrt{3}$
21.	The sides of a $\triangle ABC$	are AB = $\sqrt{13} cm$, B	$C = 4\sqrt{3} cm$ and $CA =$	7 cm. Then $\sin \theta$, where θ is
	the smallest angle of	the triangle, is equal to		
	$(1)\frac{\sqrt{3}}{2}$	$(2)\frac{1}{2}$	$(3)\frac{\sqrt{3}-1}{2\sqrt{2}}$	(4) $\frac{1}{\sqrt{3}}$
22.	In a $\triangle ABC$, if $\tan \frac{A}{2} =$	$\frac{5}{6}$ and $\tan \frac{B}{2} = \frac{20}{37}$ then		
	(1) $2a = b + c$	(2) $a > b > c$	(3) $2c = a + b$	(4) $a < b < c$
23.	In a $\triangle ABC$, a = 2b an	d $ A-B = \frac{\pi}{3}$. The mean	asure of $\angle C$ is	
	$(1)\frac{\pi}{4}$	$(2)\frac{\pi}{3}$	$(3)\frac{\pi}{6}$	$(4)\frac{\pi}{4}$
24.	In a $\triangle ABC$, the tange	ent of half the differen	ce of two angles is on	e third the tangent of half the
	sum of the two angles	s. The ratio of the sides	opposite the angles is	
	(1) 2 : 3	(2) 1 : 3	(3) 1:2	(4) 3 : 4
25.	In a $\triangle ABC$, $A = \frac{2\pi}{3}$, b	$c - c = 3\sqrt{3} cm$ and ar	$(\Delta ABC) = \frac{9\sqrt{3}}{2} cm^2.$	Then a is
	(1) $6\sqrt{3}$ cm	(2) 9 cm	(3) 18 cm	(4) 81 cm

26.	In a $\triangle ABC$, the value	es of cot A, cot B, cot G	C are in AP, then	
	(1) a, b, c are in AP		(2) a^2 , b^2 , c^2 are in A ²	P
	$(3)\cos A,\cos B,\cos$	C are in AP	(4) None of these	
27.	If in a $\triangle ABC$, $\frac{a}{\cos A}$	$=\frac{b}{\cos B}$, then		
	(1) 2 sin A sin B sin	C = 1	$(2)\sin^2 A + \sin^2 B = \sin$	$\sin^2 C$
	(3) $2 \sin A \cos B = \sin A \cos B$	in C	(4) $2\sin A \sin B = \sin G$	C
28.	If in $a \triangle ABC$. $3a = b$	+ c then $\tan \frac{B}{2} \cdot \tan \frac{C}{2}$	is equal to	
	(1) $\tan \frac{A}{2}$	(2) 1	(3) 2	(4) 1/2
29.	If in $a \triangle ABC$, $a = 1$ measure of $\angle A$ is	and the perimeter is	s six times the AM of	f the sines of the angles. The
	$(1)\frac{\pi}{3}$	$(2)\frac{\pi}{2}$	$(3)\frac{\pi}{6}$	(4) $\frac{\pi}{4}$
30.	sin A, sin B and sin C	C are in AP for the ΔAB	BC. Then	
	(1) The altitudes are	in AP	(2) The altitudes are	in HP
	(3) The medians are i	in GP	(4) The medians are	in AP
31.	If α, β, γ are altitudes	s of a $\triangle ABC$ and 2s der	notes its perimeter then	$\alpha^{+} + \beta^{+} + \gamma^{+}$ is equal to
	$(1)\frac{\Delta}{s}$	$(2)\frac{s}{\Delta}$	$(3) s.\Delta$	(4) $\frac{1}{s.\Delta}$
32.	In $a \Delta ABC$, $2s = periods (1) \sin A + \sin B + \sin B$	meter and $R = circum C$	radius. Then s/R is equ (2) $\cos A + \cos B + \cos B$	al to s C
	$(3)\sin\frac{A}{2} + \sin\frac{B}{2} + \sin\frac{B}{2}$	$\frac{C}{2}$	(4) None of these	
33.	The diameter of the c	circumcircle of a triang	le with sides 5 cm, 6 c	em and 7 cm is
	$(1)\frac{3\sqrt{6}}{2}cm$	$(2) 2\sqrt{6} \text{ cm}$	$(3)\frac{35}{48}cm$	(4) None of these
34.	The angles of a right- $(1)(2-\sqrt{3}): 2\sqrt{3}$	-angles triangled are in (2)1: $8\sqrt{3}(2+\sqrt{3})$	AP. The ratio of the in (3) $(2+\sqrt{3})$: $4\sqrt{3}$	nradius and the perimeter is (4) None of these
35.	If for a $\triangle ABC$, cot A	$\cot B \cdot \cot C > 0$ then	n the triangle is	
	(1) Right angled		(2) Acute angled	
	(3) Obtuse angled		(4) All these options	are possible
36.	In a $\triangle ABC$, the inrad	ius and three exradii a	re r, r_1, r_2 and r_3 respectively	ively. In usual notations the
	values of $r.r_1.r_2.r_3$ is e	equal to		
	$(1)2\Delta^2$	$(2)\Delta^2$	$(3)\frac{abc}{4R}$	(4) $\frac{\Delta^2}{2}$
37.	The area of $a \triangle ABC$ i	$a^2 - (b - c)^2$. Then ta	n A is equal to	
	(1) 1.333	(2) 0.750	(3) 0.533	(4) 1.666
38.	Two angles of a trian	gle are $\frac{\pi}{6}$ and $\frac{\pi}{4}$, and the	he length of the include	ed side is $(\sqrt{3}+1)cm$. The
	area of the triangle is			
	(1) 0.366	(2) 0.500	(3) 1.366	(4) 0.866

39.	In a $\triangle ABC$, the sides a, b and c are such that they are the roots of $x^3 - 11x^2 + 38x - 40 = 0$. Then			
	$\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c}$	is equal to		
	(1) 0.750	(2) 1.000	(3) 0.563	(4) 0.365
40.	In a $\triangle ABC$, the sides	are in the ratio 4 : 5 : 6	6. The ratio of the circu	imradius and the inradius is
	(1) 1.143	(2) 1.500	(3) 2.333	(4) 2.286
41.	The ratio of the circuit	mradius and in radius	of an equilateral triang	les is
	(1) 3.000	(2) 1.000	(3) 1.500	(4) 2.000
42.	If $sinx + cosx + tanx$ can be,	$+ \cot x + \sec x + \cos \theta$	cx = 7 and $sin2x = a -$	$b\sqrt{7}$, then ordered pair (a, b)
43.	(1) (6, 2) If $tan(\pi cos\theta) = cot(\pi s)$	(2) (8, 3) $\sin\theta$, then $\cos\theta$, $\sin\theta$ a	(3) (22, 8) are roots of the equation	(4) (11, 4) n
	(1) $4x^2 - 4x - 1 = 0$	(2) $4x^2 - 2x - 1 = 0$	$(3) 8x^2 - 4x - 3 = 0$	(4) none of these
44.	$\tan^{-1} \frac{(\sin 1 - 1)}{\cos 1}$ equals			
	(1) 0	(2) $1 - \frac{\pi}{2}$	(3) $\frac{\pi}{2}$ -1	(4) $\frac{1}{2} - \frac{\pi}{4}$
45.	If $4n\alpha = \pi$ then the va (1) 1	alue of $\tan \alpha \tan 2\alpha \tan^2 \alpha$	$3\alpha \dots \tan(2n-1)\alpha$ is e (3) -1	qual to (4) none of these
46.	If $x \cos \alpha + y \sin \alpha =$	$x \cos \beta + y \sin \beta = 2a$	then $\cos \alpha \cdot \cos \beta$ is	
	$(1) \ \frac{4xy}{x^2 + y^2}$	(2) $\frac{4a^2 - y^2}{x^2 + y^2}$	$(3) \frac{4ay}{x^2 + y^2}$	(4) $\frac{4a^2 - x^2}{x^2 + y^2}$
47.	The value of tan (sin ⁻ (1) 0	¹ (cos(sin ⁻¹ x)))tan (cos ⁻ (2) 1	$ \begin{array}{l} (\sin(\cos^{-1}x))), \ x \in (0) \\ (3) -1 \end{array} $	$(\pi/2)$ is equal to (4) none of these.
48.	If $0 < \alpha < \beta < \gamma < \frac{\pi}{2}$	then $\frac{\sin\alpha + \sin\beta + \sin\alpha}{\cos\alpha + \cos\beta + \cos\alpha}$	$\frac{\gamma \gamma}{\rho s \gamma}$ lies between	
	(1) sin α and sin γ	(2) tan α and tan γ	(3) $\cos \alpha$ and $\cos \gamma$	(4) none of these
49.	If $0 < x < \frac{\pi}{2}$ then	-		_
	$(1)\cos x > 1 - \frac{2x}{\pi}$	(2) $\cos x < 1 - \frac{2x}{\pi}$	$(3)\cos x > \frac{2x}{\pi}$	$(4)\cos x < \frac{2x}{\pi}$
50.	The value of $\sin^3 10^\circ$	$+\sin^{3} 50^{\circ} - \sin^{3} 70^{\circ}$ is	s equal to	3
	$(1) - \frac{3}{2}$	(2) $\frac{3}{4}$	$(3) - \frac{3}{4}$	$(4) - \frac{3}{8}$
51.	If θ_1 , θ_2 , θ_3 are $\tan \frac{\theta_1}{3} \tan \frac{\theta_2}{3} + \tan \frac{\theta_2}{3}$	three values lyin $\tan \frac{\theta_3}{3} + \tan \frac{\theta_1}{3} \tan \frac{\theta_3}{3}$	g in $[0, 2\pi]$ for is equal to	which $\tan \theta = \lambda$, then
	(1) 3λ	(2) -3	(3) λ	(4) –3λ
52.	If in $\triangle ABC$, $\angle A = si$ $x\sqrt{1-y^2}\sqrt{1-z^2} + y\sqrt{1}$	$\frac{n^{-1}(x), \angle B}{-x^2} = \sin^{-1}(y) + z\sqrt{1-z^2} + z\sqrt{1-x^2} + z\sqrt$	and $\angle C = \sin^{-1}(z)$, the $\sqrt{1-y^2}$ is equal to	n
	(1) xyz	(2) x+y+z	(3) $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$	(4) None of these
53.	If $x = \alpha$, β satisfy then	both the equations a	$\cos^2 x + b \cos x +1 = 0$	and $a \sin^2 x + p \sin x + 1 = 0$,
	(1) $2a(a+2) = b^2 - p^2$	2	(2) $2a(a - 2) = b^2 + p^2$	
	(3) 2a(a+2) = b + p		(4) none of these	

54.	If $tan\theta = n tan \phi$, then	maximum value of ta	$n^2 (\theta - \phi)$ is equal to	
	(1) $\frac{(n-1)^2}{(n-1)^2}$	(2) $\frac{(n+1)^2}{(n+1)^2}$	(3) $\frac{(n+1)}{(n+1)}$	(4) $\frac{(n-1)}{n}$
	4n	(²) 4n	⁽³⁾ 2n	2n
55.	$\tan \frac{\pi}{8}$ is the root of the	ne equation		
	$(1) x^4 + 6x^2 + 1 = 0$	(2) $x^4 - 6x^2 + 1 = 0$	$(2) x^4 - 6x^2 - 1 = 0$	(4) none of these
56.	If θ_1 , θ_2 are the roots	of equation $\tan^2 \theta - a$	$\tan \theta - a - 1 = 0 (when$	re a < -2) then the area of the
	triangle formed by the	ree straight lines $y = ta$	$n \theta_1 x, y = \tan \theta_2 x an$	d y = a is
	(1) $\frac{a^2(a-2)}{2(a+1)}$	(2) $\frac{-a^{2}(a+2)}{2(a-1)}$	(3) $\frac{-a^{2}(a-2)}{2(a-1)}$	(4) $\frac{a^2(a+2)}{2(a+1)}$
57.	If θ_1 , θ_2 and θ_3 lies	s in the interval $(0, \pi)$) and $a + b + c = 2$, then minimum value of the
	expression (a $\sin\theta_1 + (1)$) 2	$b \sin\theta_2 + c \sin\theta_3$ (a co	$\operatorname{sec}\theta_1 + \operatorname{b}\operatorname{cosec}\theta_2 + \operatorname{c}$	$\cos (\theta_3)$ is
58	(1) 2 Which of the following	(2) 3 and statements about tar	(5) 4 10 ⁰ is true?	(4) none of these
50.	(1) It is a rational num	nber	(2) It is a irrational nu	umber
	(3) It is less than 2		(4) It is greater than 2	
59.	If $\left(\cos^2 x + \frac{1}{\cos^2 x}\right)$	$+\tan^2 2y (3+\sin 3z) =$	4, then	
	(1) x may be a multiplication (1) x may be a multiplication (1) and $(1$	ole of π	(2) x can not be an ev	en multiple of π
	(3) $z can be a multiple$	e of π	(4) y can be a multip	le of $\pi/2$.
60.	$\tan^{-1} \frac{(\sin 1 - 1)}{\cos 1}$ equals			
	(1) 0	(2) $1 - \frac{\pi}{2}$	(3) $\frac{\pi}{2}$ -1	(4) $\frac{1}{2} - \frac{\pi}{4}$
61.	If $4n\alpha = \pi$ then the va	alue of $\tan \alpha \tan 2\alpha \tan 3$	$\beta\alpha \dots \tan(2n-1)\alpha$ is e	qual to
	(1) 1	(2) 0	(3) -1	(4) none of these
62.	If $x \cos \alpha + y \sin \alpha =$	$x \cos \beta + y \sin \beta = 2a$	then $\cos \alpha \cdot \cos \beta$ is	4-22
	(1) $\frac{4xy}{x^2 + y^2}$	(2) $\frac{4a - y}{x^2 + y^2}$	(3) $\frac{4ay}{x^2 + y^2}$	(4) $\frac{4a - x}{x^2 + y^2}$
63	The value of $\tan(\sin^2)$	$(\cos(\sin^{-1}x)))$ tan ($\cos^{-1}x$	$(\sin(\cos^{-1}x))) x \in (0)$	$\pi/2$) is equal to
05.	(1) 0	(2) 1	(3)-1 (3)-1	(4) none of these.
64.	If $0 < \alpha < \beta < \gamma < \frac{\pi}{2}$	then $\frac{\sin \alpha + \sin \beta + \sin \beta}{\cos \alpha + \cos \beta + \cos \beta}$	$\frac{1\gamma}{100}$ lies between	
	(1) sin α and sin γ	(2) tan α and tan γ	(3) $\cos \alpha$ and $\cos \gamma$	(4) none of these
65.	If $\left(\cos^2 x + \frac{1}{\cos^2 x}\right)$	$+\tan^2 2y (3+\sin 3z) =$	4, then	
	(1) x may be a multiplication (1) x may be a multiplication (1) and $(1$	ole of π	(2) x can not be an ev	ven multiple of π
	(3) $z can be a multiple$	e of π	(4) y can be a multip	le of $\pi/2$.
66	If $0 < x < \frac{\pi}{2}$ then			
00.	$10 < x < \frac{1}{2}$ then			
	$(1)\cos x > 1 - \frac{2x}{\pi}$	$(2)\cos x < 1 - \frac{2x}{\pi}$	$(3)\cos x > \frac{2x}{\pi}$	$(4)\cos x < \frac{2x}{\pi}$
67.	Which of the followin	ng statements about tar	10° is true?	
	(1) It is a rational num (2) It is loss than 2	nber	(2) It is a irrational nut (4) It is greater than (2)	imber
68	(5) It is less than 2 The value of $\sin^3 10^0$	$+\sin^3 50^0 - \sin^3 70^0$ is	(4) It is greater than 2	
00.	3	3 3	3	. 3
	$(1) - \frac{1}{2}$	$(2) \frac{1}{4}$	$(3) - \frac{1}{4}$	$(4) - \frac{1}{8}$

69. If
$$\theta_1$$
, θ_2 , θ_3 are three values lying in $[0, 2\pi]$ for which $\tan \theta = \lambda$, then $\tan \frac{\theta_1}{\theta_1} \tan \frac{\theta_2}{\theta_2} + \tan \frac{\theta_2}{\theta_3} \tan \frac{\theta_3}{\theta_3} + \tan \frac{\theta_3}{\theta_3} \tan \frac{\theta_3}{\theta_3}$ is equal to
(1) 3. (2) -3 (3), (4) -3. (4) -3. (1), $(4) -3.$ (5), $(4) -3.$ (7), $(5) -3.$ (7), $(5) -3.$ (7), $(3) -3.$ (7), $(4) -3.$ (7)

84

2π

H. If
$$2^{\frac{2}{\sin^{-1}x}} - 2(a+2)2^{\frac{n}{\sin^{-1}x}} + 8a < 0$$
 for at least one real x, then
(1) $\frac{1}{8} \le a < 2$ (2) $a < 2$
(3) $a \in \mathbb{R} - \{2\}$ (4) $a \in \left[0, \frac{1}{8}\right] \cup (2, \infty)$

A root of the equation, sinx + x - 1 = 0, lies in the interval 85. (1) (0, $\pi/2$) (2) $(-\pi/2, 0)$ (3) $(\pi/2, \pi)$ (4) $(-\pi, -\pi/2)$

PHYSICS

Syllabus: 1. GRAVITATION, 2. OSCILLATIONS AND WAVES

1. The particle of mass m oscillation at the end of a spring constant K is acted upon by a dumping for F = -bv. Its motion will be critically damped if b =

$$(1)\sqrt{\frac{K}{m}} \qquad (2)2\sqrt{Km} \qquad (3)\sqrt{\frac{K^2}{2m}} \qquad (4)\sqrt{\frac{K}{2m}}$$

2. The displacement of a particle varies according to the relation $x=4(\cos \pi t + \sin \pi t)$. The amplitude of the particle is (2)4(1) - 4 $(3)4\sqrt{2}$ (4) 8

3. A particle of mass m is attached to a spring (of spring constant K) and has a natural angular frequency ω_0 . An external force F(t) equal to $F = F_0 \cos \omega t$ is applied to the oscillator. The amplitude of the oscillator will be

(1)
$$\frac{m}{|\omega_0^2 - \omega^2|}$$
 (2) $\frac{F_0}{m|\omega_0^2 - \omega^2|}$ (3) $\frac{1}{m(\omega_0^2 + \omega^2)}$ (4) $\frac{m}{\omega_0^2 + \omega^2}$

4. A mass 'M', attached to a horizontal spring, executes SHM with amplitude A1. When the mass 'M' passes through its mean position then a smaller mass 'm' is placed over it and both of them together with amplitude A₂. The ratio of $\left(\frac{A_1}{A_2}\right)$ is

$$(1)\left(\frac{M}{M+m}\right)^{\frac{1}{2}} \qquad (2)\left(\frac{M+m}{M}\right)^{\frac{1}{2}} \qquad (3)\frac{M}{M+m} \qquad (4) \frac{M+m}{M}$$

- 5. The amplitude of a damped oscillator decreases to 0.9 times its original magnitude in 5s. In another 10s it will decrease to α times its original magnitude. Then α equals (1) 0.7(2) 0.81(3) 0.729(4) 0.027
- 6. Two light identical springs of spring constant K are attached horizontally at the two ends of a uniform horizontal rod AB of length l and mass m. The rod is pivoted at its centre 'O' and can rotate freely in horizontal plane. The other ends of the two springs are fixed to rigid supports as shown in figure. The rod is gently pushed through a small angle and released. The frequency of resulting oscillation is:

7. A mass of 2kg oscillates on a spring with force constant 50 N/m when a damping force with constant b = 12 in SI unit is introduced, frequency of oscillation (Damping force, f = -bv)

(1) Decreases	s by 10%	(2) Decreases	s by 25%

- (3) Decreases by 50% (4) Decreases by 20%
- 8. The mass and the diameter of a planet are three times the respective values for the Earth. The period of oscillation of a simple pendulum on the Earth is 2s. The period of oscillation of the

same pendulum on the planet would be \sqrt{n} times that on earth, find 'n'.

- (1) 3(2)5(4) 6(3)7
- 9. A cylindrical plastic bottle of negligible mass is filled with 3140 ml of water and left floating in a pond with still water. If pressed downward slightly and released, it starts performing simple harmonic motion at angular frequency ω . If radius of the bottle is 2.5 cm then ω in rad/s close to: (density of water = 10^3 kg/m^3) (1 (3) 5.00(4) 1.25

- 10. At t = 0, a particle executing SHM with a time period 3s is in phase with another particle executing SHM. The time period of the second particle is T (less than 3 s). If they are again in the same phase for the third time after 45s, then the value of T is (in sec)
- (3) 2.00(4) 2.50(1) 1.00(2) 1.5011. A disc of radius R is pivoted at the rim and is set for small oscillations. If disc is replaced by ring, then to have the same time period as that of the disc, radius of ring should be 'n' times of disc, find 'n'.

$$(1) 0.75 (2) 0.80 (3) 0.78 (4) 0.65$$

12. The potential energy of a particle of mass 5mg executing simple motion along x-axis is given by $V(x) = (1.23) + (4.84)x^2$, where V(x) is in joules and x is in meters. The frequency of oscillation of the particle in Hz is (1) 8(2)7(3) 6(4)5

13. The mathematical forms for three sinusoidal travelling waves are given by,

Wave 1: $y(x, t) = (2cm) \sin(3x - 6t)$

Wave 2: $y(x, t) = (3cm) \sin(4x - 12t)$

Wave 3: $y(x, t) = (4cm) \sin(5x - 11t)$

Where x is in meters and t is in seconds. Of these waves:

(1) Wave 1 has the greatest wave speed and the greatest maximum transverse string speed.

(2) Wave 2 has the greatest wave speed and wave 1 has the greatest maximum transverse string speed.

(3) Wave 3 has the greatest wave speed and the greatest maximum transverse string speed.

(4) Wave 2 has the greatest wave speed and wave 3 has the greatest maximum transverse string speed.

14. A sinusoidal wave travelling in the positive direction of x on a stretched string has amplitude 2.0 cm, wavelength 1 m and wave velocity 5.0 m/s. At x = 0 and t = 0, it is given that displacement y = 0 and $\frac{\partial y}{\partial t} < 0$. Express the wave function correctly in the form y = f(x, t)

(1)
$$y = (0.02m)\sin 2\pi (x-5t)$$

(2) $y = (0.02cm)\cos 2\pi (x-5t)$
(3) $y = (0.02m)\sin 2\pi (x-5t+\frac{1}{4})$
(4) $y = (0.02cm)\cos 2\pi (x-5t+\frac{1}{4})$

15. An observer standing at sea coast observe 54 waves reaching the coast per minute if the wavelength of wave is 10 m, its velocity is

- 16. A wave of frequency 680 Hz travels with a speed of 340 m/s in a medium. The distance between two nearest points which are out of phase is

 (1) 1/3m
 (2) 1/12m
 (3) 1/6m
 (4) 1/4m
- 17. Two particles separated by a distance 22 mm in a progressive wave are out of phase. If the number of waves passing across a point in the medium is 3750 the velocity of wave is (1) 3300 m/s
 (2) 330 m/s
 (3) 330 cm/s
 (4) 165 m/s
- 18. The maximum particle velocity in a progressive wave is 4 times of the wave velocity. If the amplitude of the particle is 'a'. The propagation constant is

 (1) 4/a
 (2) 2/a
 (3) a/4
 (4) a/2
- 19. The minimum distance between two particles in similar phase is 10 cm. The time after which a given particle comes to same phase is 0.05 second. What is the velocity of progressive wave?
- (1) 2000 cm/sec
 (2) 100 cm/sec
 (3) 200 cm/sec
 (4) 50 cm/sec
 20. Find the equation of plane progressive wave travelling along X-axis in the positive direction having a amplitude of 0.04 m, frequency 440 Hz and wave velocity 330 m/s. (y = 0 at x = 0 and t = 0)

(1)
$$y = 0.04 \sin 2\pi \left(440t - \frac{4x}{3} \right)$$

(2) $y = 0.04 \sin 2\pi \left(440t + \frac{4x}{3} \right)$
(3) $y = 0.04 \cos 2\pi \left(440t - \frac{4x}{3} \right)$
(4) $y = 0.04 \cos 2\pi \left(440t + \frac{4x}{3} \right)$

21. The maximum particle velocity is 3 times the wave velocity of a progressive wave. If the amplitude of the particle is 'a'. The phase difference between the two particles separated by a distance of 'x' is

(1) x/a (2)
$$3x/a$$
 (3) $3a/x$ (4) $3\pi x/a$

- 22. $y(x, t) = 0.8/[(4x + 5t)^2 + 5]$ represents a moving pulse, where x, y are in meter and t in second. Then
 - (a) pulse is moving in + x direction
 - (b) in 2 second it will travel a distance 2.5 m
 - (c) its maximum displacement is 0.16 m
 - (d) its maximum displacement is 0.8 m
 - (1) a & b are correct (2) b & c are correct (3) a, b & c correct (4) All are correct

23. The equation of a progressive wave is given by $y=0.4\sin\left[\pi\left(\frac{t}{5}-\frac{x}{9}\right)+\frac{\pi}{6}\right]$ (in SI units). Then

which of the following is correct?

(1) Time taken to propagate 1 wave across a point is 10s

(2) 80 cm, 40 Hz

- (2) The wavelength is 18m
- (3) The amplitude is 0.4m
- (4) All the above
- 24. For the wave shown in the figure, the frequency and wavelength if its speed is 320 m/s are

(1) 8 cm, 400 Hz

(3) 8 cm, 4000 Hz

(4) 40cm, 8000 Hz

25. The equation of a wave travelling on a string stretched along the X-axis is given by $y = Ae^{-\left(\frac{x}{a} + \frac{t}{T}\right)^2}$ where A, a and T are constant of appropriate dimensions.

(A) The speed of the wave is a/T

- (B) The wave is travelling along negative X-axis
- (C) The maximum of the pulse located at t = T is x = -a
- (D) The maximum of the pulse located at t = 2T is x = -2a
- (1) A, B, C, D (2) A, C(3) B, C (4) A, D
- 26. The figure represents the instantaneous picture of a transverse harmonic wave travelling along the negative X-axis. Choose the correct alternative(s) related to the movement of the nine points shown in the figure. The points moving upward is

- (1) a (2) c(3) d (4) e27. A transverse wave whose amplitude is 0.5 m wavelength is 1 m and frequency is 2Hz, is travelling along positive X-direction. The equation of this wave will be
 - (2) $y = 0.5 \cos(2\pi x + 4\pi t)$ (1) $y = 0.5 \cos(2\pi x - 4\pi t)$ (4) $y = 0.5 \sin(2\pi x + 2\pi t)$ (3) $y = 0.5 \sin(\pi x - 2\pi t)$
- 28. The linear density of a vibrating string is 10^{-4} kg/m. A transverse wave is propagating on the string, which is described by the equation $y = 0.02 \sin 9(x + 30t)$, where x and y are in meters and time t is in seconds. The tension in the string is

(1) 0.09 N (2) 0.36 N (3) 0.9 N (4) 3.6 N

- 29. If the length of a stretched string is shortened by 40% and the tension is increased by 44% then the ratio of the final and initial wave velocity is
 - (1) 6:5(2) 3 : 4(3) 3 : 2(4)1:3
- 30. The motion is given by $y=2e^{2x} \cdot e^{3t}$, where y and x are in meters and t is in second.
 - (1) This represents a progressive wave travelling in ve x-direction
 - (2) This represents a progressive wave travelling in + ve x-direction
 - (3) This represents a stationary wave
 - (4) This represents a wave pulse
- 31. A uniform rope having mass 'm' hangs vertically from a rigid support. A transverse wave pulse is produced at the lower end. The speed (v) of wave pulse varies with height 'h' from the lower end as: (lower end of rope is free)

$$(1) \stackrel{v}{\stackrel{f}{\longrightarrow}}_{h} (2) \stackrel{v}{\stackrel{f}{\longrightarrow}}_{h} (3) \stackrel{v}{\stackrel{f}{\longrightarrow}}_{h} (4) \stackrel{v}{\stackrel{f}{\longrightarrow}}_{h}$$

32. A transverse wave is represented by the equation $y = y_0 \sin \frac{2\pi}{\lambda} (vt - x)$ for what value of λ is the maximum particle velocity equal to two times the wave velocity?

(1) $\lambda = 2\pi y_0$ (2) $\lambda = \frac{\pi y_0}{3}$ (3) $\lambda = \frac{\pi y_0}{2}$ (4) $\lambda = \pi y_0$

<u>SECTION-II</u> (Numerical Value Answer Type)

- 33. A uniform rope of length 12 m and mass 12 kg hangs vertically from a rigid support. A block of mass 4 kg is attached to the free end of the rope. A transverse pulse of wavelength 0.04 m is produced at the lower end of the rope. Find the wavelength of the pulse when it reaches the top of the rope.
 - (1) 0.04 m (2) 0.08 m (3) 0.02 m (4) 0.1 m
- 34. A wave is represented by the equation y = 0.5 sin(10t + x) meter. It is a travelling wave propagating along x-direction with velocity (in m/s)
 (1) 10
 (2) 20
 (3) 5
 (4) 2

35. A transverse wave pulse is given by $Y = \frac{6}{3 + (3t - 2x)^2}$, where x is in meter and t is in second.

Find the velocity of the wave pulse. (in m/s)

- (1) 1.5 (2) 1.55 (3) 2.00 (4) 2.50
- 36. A particle of mass 'm' is subjected to two SHM's given by $y_1 = 4\sin\left(\omega t + \frac{\pi}{2}\right)$ and

$$y_2 = 2\sin\left(\omega t - \frac{\pi}{2}\right)$$
. The maximum speed of the particle is $n\omega$, find n
(1) 2 (2) 3 (3) 0.5 (4) 4

37. If two simple harmonic motions are represented by equations $y_1 = 10\sin\left(3\pi t + \frac{\pi}{4}\right)$ and $y_1 = 5\left(\sin 3\pi t + \sqrt{3}\cos 3\pi t\right)$ find the ratio of their amplitudes

$$y_2 = 5(\sin 3\pi t + \sqrt{3}, \cos 3\pi t)$$
, and the ratio of their amplitudes.
(1) 1 (2) 1.5 (3) 5 (4) 2

38. In the given wave pulse, the ratio of particle speed and wave speed at P and Q are x and y respectively. Then

(1)
$$x > y$$
 (2) $x = y$ (3) $x < y$ (4) $x \le y$

39. The snapshots of a wave at two instants t_1 and t_2 are given. The speed of wave is

(1)
$$\frac{x_1}{t_1}$$
 (2) $\frac{x_2}{t_2}$ (3) $\frac{x_1 + x_2}{t_1 + t_2}$ (4) $\frac{x_2 - x_1}{t_2 - t_1}$

40. A flexible loop of radius R spins with a linear velocity v_1 . A kink moves in the loop with a speed v_2 relative to ground. Then, $\frac{v_1}{v_2} =$ (motion of kink is in same sense as rotation)

- (1) 1:1 (2) 1:2 (3) 2:1 (4) None of these
- 41. A harmonic wave $y = A \sin(10t x)$ where A is in centimetre, x in meter and t is in second. If wave velocity is 50 times the maximum particle velocity, A = (1) 1 cm (2) 2 cm (3) 0.5 cm (4) 0.8 cm

42. The phase difference between two corks A and B on the water wave is

43. A plane progressive wave of frequency 50 Hz, travelling along positive x-axis is represented as $y = (5 \times 10^{-5} \text{ m}) \sin(100\pi t)$ at x = 0, wave speed is 300 m/s. Maximum difference in displacements at x = 0, and x = -3 m, is (1) 5×10^{-5} m (2) 2.5×10^{-4} m (3) 5×10^{-4} m (4) 10^{-4} m

44. The path difference between two waves
$$y_1 = 0.02 \sin(8t - 0.1x)$$
 and
 $y_2 = 0.01 \cos\left(8t - 0.1x + \frac{\pi}{3}\right)$ is
(1) $\frac{20\pi}{3}$ (2) $\frac{25\pi}{3}$ (3) 5π (4) None of these

45. Which of the following is a wave equation?

(1) zero

- (a) $y = ax^2 bt^2$ (b) $y = A \sin \omega t \cos kx$ (c) $y = \cos^2(kx - \omega t)$ (d) $y = (x - vt)^3$
- 46. The phase difference in displacement and acceleration of a particle in a vibrating string is(1) zero(2) 180°(3) time varying(4) none of these

47. A triangular pulse moves towards right with a speed v. After a time $t = 10\frac{x}{v}$, the shape of the pulse at the non-rigid boundary is given as

48. The transverse pulse has velocity v_1 (w.r.t. the string) while moves from P to Q when the load at B is 6m. It has velocity v_2 (w.r.t. the string) while moving from P to Q when the load at B is 3m.

49. Two snap-shots 1 and 2 of a sine wave are given. Then

(1) 2 is ahead of a phase $\frac{2\pi}{\lambda} \Delta x$ from 1 (2) 1 is ahead of 2 by a phase $\frac{2\pi}{\lambda}\Delta x$ (4) 2 is ahead of 1 by a phase $\frac{\pi}{2}\Delta x$ (3) 1 and 2 are in same phase if $\Delta x = \lambda$

50. Two waves 1 and 2 are shown at a time $t = t_1$, say in two identical strings having same tensions. Then, the ratio of (1 and 2). $(\lambda_1 = 2\lambda_2)$

51. If the pressure amplitude is ΔP_0 , the difference in pressures at the maximum compressed and maximum rarefied position is

(1)
$$\frac{\Delta P_0}{2}$$
 (2) ΔP_0 (3) $4\Delta P_0$ (4) $2\Delta P_0$

52. Intensity of sound wave is (wave speed is fixed)

(1) increased by four times when pressure amplitude becomes twice and frequency remains the same

(2) increased by four times when displacement amplitude becomes twice and frequency remains the same

(3) increased by four times when displacement amplitude remains same and frequency becomes twice

(4) all of the above

(3) intensities is 1:1

53. Which of the following represents loudness versus intensity of sound graph?

54. When a longitudinal wave moves in different media, which of the following remains constant?

(1) Amplitude (2) Frequency (3) Intensity (4) Wavelength

55. At the place of maximum compressed zone

(1) Particle (molecular) speed is maximum (2) Particle (molecular) speed is zero

(3) Displacement of an element of air is zero (4) Velocity of the layer of air is zero

56. A point source emits sound in all directions. The ratio of radial distance $\left(\frac{\gamma_1}{\gamma_2}\right)$ from the source

where the difference in sound level is $3dB (log_{10}2 = 0.3)$, is

(1)
$$\frac{1}{2}$$
 (2) $\frac{1}{\sqrt{3}}$ (3) $\frac{1}{\sqrt{2}}$ (4) None of these

5	7. Equation of a longitudi	nal wave is given a	as $y = 10^{-2} \sin 2x$	$\pi \left(1000t + \frac{50x}{17} \right)$	$\frac{1}{2}$ (all SI units). At t = 0
	the excess pressure is m	aximum at x =			
	(1) 0.34	(2) 0.255	(3)	0.085	(4) 0.325
		СНЕ	MISTRV		
Svlla	bus: SECOND YEAR IN OR	GANIC CHEMISTRY:-	- 1.GENERAL PRIN	CIPAL OF METALI	LURGY,
U	2.GROUP -15 ELEMENT 6.D AND F -BLOCK ELEI	S, 3. GROUP - 16 ELEN MENTS AND CO-ORDI	- IENTS, 4. GROUP - NATION COMPOU	<mark>17 ELEMENTS , 5.</mark> NDS	GROUP -18 ELEMENTS,
1	The number of unpaired	electrons in the or	ound state electr	ronic configur	ation of Group 15
1.	elements is	ciccuons in the gr	ound state ciecti	tonic configura	ation of Oloup 15
	$(1) 2 \qquad $	2) 3	(3) 4	(4) 5	
2.	The sum of atomicity of	nitrogen and phos	phorus is	(1) 5	
	(1) 4 (1)	2) 5	(3) 6	(4) 7	,
3.	The acid obtained by the	action of cold wa	ter on $P_x O_y$ is I	H_3PO_3 where x	+ y is
	(1) 10 (2) 12	(3) 15	(4) 5	
۱.	The atomicity of yellow	phosphorus is			
	(1) 4 (2) 3	(3) 5	(4) 8	5
5.	The number of $P - O - P$	H links in orthoph	osphoric acid m	olecule is	
	(1) 2 (2) 4	(3) 3	(4) 1	
6.	H_2SO_4 acts as oxidising	agent. In this respo	ect the correct of	rder is	
	(1) $H_3PO_4 > H_2SO_4 > H_2$	NO_3 (2)	$H_3PO_4 < H_2SO_4$	HNO_3	
	(3) $H_3 PO_4 < HNO_3 < H_2$	SO_4 (4)	$H_2SO_4 > H_3PO_4$	$> HNO_3$	
7.	Oxygen is more electron	egative than sulphu	r. Yet H ₂ S is a	cidic while H	O is neutral. This is
	Bacausa	<i>6</i>	, Σ	Ζ	
	(1) Water is highly assoc	isted compound			
	(2) H- S bond is weaker t	han H- O bond			
	(3) H_2S is a gas while H_2	O is liquid			
	(4) Molecular weight of I	H_2S is more than t	hat of H ₂ O		
	_	2	2		
8. \	When H_2S gas is passed in	to aqueous sulphu	r dioxide		
	(1) A clear solution of H_2	SO_4 is formed	C 1 1		
	(2) SO_2 is converted into a	a yellow precipitate	e of sulphur		

- (3) H_2S is converted into a yellow precipitate of sulphur
- (4) Both SO_2 and H_2S are converted into a yellow precipitate of sulphur
- **9.** Sulphuryl chloride is dissolved in water. Which of the following statement is wrong about the solution
 - (1) Gives white ppt with barium chloride insoluble in any acid
 - (2) The solution contain two different types of acids a monobasic and a dibasic acid
 - (3) The solution contain mixture of two different acids
 - (4) The oxidation states of the elements in SO₂Cl₂ donot change when dissolved in water

10.	0. XeF_6 on complete hydrolysis forms a compound 'A'. The compound 'A' explodes in dry state.					
	Compound 'A' is.					
	(1) XeO_3	(2) $XeOF_2$	(3) XeO_2F_2	(4) $XeOF_4$		
11.	Hybridization in XeOF ₄	is same as that of				
	(1) XeF_2	(2) XeF_4	(3) XeF_{6}	(4) $XeOF_2$		
12.	Chlorine gas can be drie	d by passing over :				
	(1) Quicklime	(2) soda lime				
	(3) Caustic potash sticks (4) concentrated sulphuric acid					
13.	Solid Cl_2O_6 exists as :					
	(1) $ClO_2^+.ClO_4^-$	(2) Covalent species	$(3) \left(ClO_3 \right)_2$	$(4) \left(Cl_2 O_6 \right)_2$		
14.	PCl ₃ reacts with water to	o form				
	(1) PH ₃	(2) H ₃ PO ₃ , HCl	(3) $POCl_3$	(4) H_3PO_4		
15.	Which one is the anhydr	ride of HClO ₄ ?				
	(1) Cl_2O	(2) ClO_2	$(3) \operatorname{Cl}_2 \operatorname{O}_6$	$(4) \operatorname{Cl}_2 \operatorname{O}_7$		
16.	Charge distribution in 10 (1) t^+ Cl^-	odine monochloride is	best represented as $(2) L^{-} G L^{+}$	(4) $x^{\delta-} \alpha x^{\delta+}$		
17	(1) $I^{*}Cl$ Which of the following:	(2) $I^{\circ}Cl^{\circ}$	$(3) T Cl^2$	$(4) I^{\circ} Cl^{\circ}$		
1/.	(1) HCl	(2) HOC1	(3) HBr	(4) HI		
18.	The correct order of acid	lic strength is	(3) 1101	(+) 111		
	(1) $Cl_2O_7 > SO_2 > P_4O_1$	0	(2) $CO_2 > N_2O_5 > SC_2$) ₃		
	$(3) Na_2O > MgO > Al_2O$	O_3	(4) $K_2O > CaO > Mg$	j0		
19.	Which of the following	statements is incorrect	about ozone?			
	(1) Ozone is formed in t	he upper atmosphere b	y a photochemical rea	ctions involving dioxygen.		
	(2) Ozone is more reacti	ve than dioxygen.				
	(3) Ozone is diamagneti	c while dioxygen is pa	ramagnetic.			
••	(4) Ozone protects earth	's inhabitants by absor	bing gamma radiation	S.		
20.	which of the following (1) SO ₂ is an angular m	statements regarding s	ulphur dioxide is not c	orrect?		
	(1) SO_2 is an angular in (2) SO_2 is an anhydride	of sulphuric acid				
	(2) SO_2 is an acidic oxid	de.				
	(4) The S–O bond lengt	th is smaller than the e	xpected value			
21.	Which set describes shap	pes of XeF ₂ , XeF ₄ , Xe	eF ₆ , respectively?			
	(1) V-shaped, tetrahedra	al, octahedral				
	(2) Linear, tetrahedral,	distorted octahedral				
	(3) V-shaped, square pl	anar, octahedral				
	(4) Linear, square plana	r, distorted octahedral				
22.	Electron affinity of chlo	rine is greater than tha	t of fluorine; fluorine i	s a better oxidising agent than		
	(1) ALL (dissociation) of	fropriate answer.	(a)			
	(1) ΔH (dissociation) of (2) ΔH (Hydrotion) of I	$F_2(g) < \Delta H$ (dissoci	atton) of $Cl_2(g)$			
	$(2) \Delta \Pi$ (myuration) of f	1		1		
	(3) net energy released	for $\frac{1}{2}F_2(g) \longrightarrow F^-(a)$	q) is greater than that f	for $\frac{1}{2}Cl_2(g) \longrightarrow Cl^-(aq.)$		
	(4) fluorine is more elec	tronegative than chlori	ine			
23.	3. Which of the following statement is incorrect?					

- (1) In acid solution $HClO_2$ disproportionates to ClO_2 and Cl^- .
- (2) In warm acid solution ClO^- disproportionates to yield Cl^- and ClO_3^- .
- (3) Both ClO_4^- and ClO_3^- are powerful oxidising agents then ClO^-
- (4) All of them.

24.

Cold, dil. NaOH $A + NaCl + H_2O$ Cl_2 Hot, conc. NaOH $B + NaCl + H_2O$ Compound (A) and (B) are (1) NaClO₃, NaClO

(3) NaClO₄, NaClO₃

25. HBr and HI can be prepared by heating NaBr and NaI respectively with concentrated (1)HCl
(2) H₂SO₄
(3) HNO₃
(4) H₃PO₄

<u>SECTION-II</u> (Numerical Value Answer Type)

(2) NaOCl₂, NaOCl(4) NaOCl, NaClO₃

26.	The sum of number of l	one pairs and the num	ber of S-S bonds in S_8	molecules are
	respectively:			
	(1) 8	(2) 24	(3) 16	(4) 12
27.	Available chlorine in a g	given sample of bleach	ing powder is 42. How	much chlorine gas is
	obtained at N.T.P., when	10 g of this bleaching	g powder is treated wit	h HCl ?
	(1) $1.325L$	(2) $2 \cdot 650L$	(3) $4 \cdot 2L$	(4) $6 \cdot 3L$
28.	Chlorine water on coolir	ng deposits greenish –	yellow crystals of Cl_2 .	xH_2O then find x is
	(1) 4	(2) 6	(3) 2	(4) 8
29.	Boiling of dil. HCl acid	does not increase its c	oncentration beyond x	percent because hydrochloric
	acid forms a constant bo	iling mixture. Here x i	S	
	(1) 2.22	(2) 22.2	(3) 11.1	(4) 1.11
30.	Total number of lone pa	ir in XeO_3 is		
	(1) 1	(2) 9	(3) 10	(4) 7
31.	Which one of the follo	owing pairs of substa	nces when mixed, pr	oduces chlorine gas at room
	temperature			
	(1) NaCl and MnO_2		(2) NaCl and HNO_3 (co	nc.)
	(3) <i>NaCl</i> and H_2SO_4 (c	onc.)	(4) HCl (conc.) and K	MnO_4
32.	Concentrated H_2SO_4 car	not be used to prepare	<i>HBr</i> from <i>NaBr</i> , beca	use it
	(1) Reduces HBr		(2) Oxidises HBr	
	(3) Disproportionates H	IBr	(4) Reacts slowly with	n NaBr
33.	Which of the following l	halides is least stable a	and has doubtful existent	nce
	(1) CI_4	(2) Gel_4	(3) SnI_4	(4) PbI_4
34.	Chlorine cannot displace	2		
	(1) Fluorine from <i>NaF</i>		(2) Iodine from <i>Nal</i>	
	(3) Bromine from <i>NaBr</i>		(4) None of these	
	TT TI (1 · 1 · 1 · 1			

	(1) F_2	$(2) SF \qquad ($	(3) <i>HF</i>	(4) None
36.	Cl_2 reacts with CS_2 in	presence of I_2 catalyst to	form	
	(1) $CHCl_3$	(2) <i>CCl</i> ₄ (3) $C_2 H_5 Cl$	(4) $C_2 H_6$
37.	Amongst LiCl, RbCl, BeCl	$_2$ and M_gCl_2 . Maximum an	nd minimum ionic cl	haracter will be shown by the
	compounds			
	(1) $LiCl, MgCl_2$	(2) $RbCl, BeCl_2$ (3) $RbCl, MgCl_2$	(4) $M_gCl_2, BeCl_2$.
38.	Which is formed when	fluorine react with hot an	d concentrated sodiu	m hydroxide
	(1) O_2	(2) 03 (3) <i>NaO</i>	(4) <i>HF</i>
39.	Which of the following	condition is used to find	atomic Cl_2 from mo	lecular Cl ₂
40.	 (1) High temperature, 1 (2) Low temperature, 1 (3) High temperature, 1 (4) Low temperature, 1 1 mole 2 m Which one is least basic 	high pressure nigh pressure low pressure ow pressure noles		
	(1) BI_3	(2) BBr_3	(3) BCl_3	(4) <i>BF</i> ₃
41.	On heating $NaCl + K_2Cr_2$	O_7 + conc. H_2SO_4 , the gas of	comes out is	
	(1) O_2	(2) <i>Cl</i> ₂	(3) $CrOCl_2$	(4) CrO_2Cl_2
42.	Aqua regia is a mixture	of		
	(1) $3HCl + 1HNO_3$	(2) $H_3PO_4 + H_2SO_4$	(3) $3HNO_3 + 1HCl$	(4) $HCl + CH_3COOH$
43.	Unlike other halogens f	luorine does not show hig	gher oxidation states	because
44.	 (2) It has no <i>d</i>-orbitals (3) Its atomic radius is (4) The <i>F</i>⁻ ion is stable Which halogen does no (1) <i>F</i>. 	very small e and isoelectronic with n t show variable oxidation	eon state (3) Br	(4) L
45	To purify fluorine gas	fumes of HE are remove	$d \mathbf{h} \mathbf{v}$	() 12
ч.,	(1) Solid <i>NaF</i>	(2) H_2 gas	(3) Solid <i>KHE</i>	(4) None of these
46.	Fluorine is prepared by	(-)		
	(1)Oxidation of <i>HF</i>		(2) Electrolysis of	KF
	(3)Electrolysis of fused	1 KHF ₂	(4)Decomposition	of HgF_2
47.	Amongst halogens fluo	rine is most oxidising bec	ause	
	(1) Fluorine has highes(2) Fluorine is most ele(3) Dissociation energy(4) All are correct	at electron affinity ectronegative y for fluorine molecule is	lowest	
48.	The alkali metal halides	s are soluble in water but	<i>LiF</i> is insoluble beca	use
	(1) It is amphoteric		(2) The $Li - F$ box	nd is highly ionic
40	(3) Its lattice energy is	high	(4) Li^+ ion is leas	t hydrated
49.	as does so by oxidatio	ng pairs does the first ga	is dieaches nowers t	by reduction while the second
	(1) CO and CI_{-}	(2) so and C_{L}	(3) H_{2} and Br_{2}	(4) NH_{2} and SO_{2}
50.	Which of the following	halogens does not form c	oxvacid	() 1113 und 50 2
2.01	(1)Fluorine	(2) Chlorine	(3) Bromine	(4) Iodine
Page	e 17	Assignm	ent – 2	22-04-2020

51.	Which of the following	g molecule is theoritically n	ot possible	
	$(1) OF_4$	(2) OF_2	(3) SF_4	(4) O_2F_2
52.	Iodine is released whe	n potassium iodide reacts w	ith	
	(1) $ZnSO_4$	(2) $CuSO_4$	(3) FeSO $_4$	(4) $(NH_4)_2 SO_4$
53.	Which of the following	g is used in the preparation	of chlorine	
	(1) Only MnO_2		(2) $OnlyKMnO_4$	
	(3) Both MnO_2 and KM	AnO_4	(4) Either MnO_2	or KMnO ₄
54.	Among Cl^- , Br^- , I^- , t	he correct order for being of	xidise to dihaloge	n is
	(1) $I^- > Cl^- > Br^-$	(2) $Cl^- > Br^- > I^-$	$(3) I^- > Br^- > Cl^-$	$(4) Br^- > I^- > Cl^-$
55.	On heating $KClO_3$, we	get		
	(1) Cl_2O	(2) ClO_2	(3) <i>ClO</i> ₃	(4) Cl_2O_7
56.	For which one of the f	ollowing properties of halog	gens the sequence	F > Cl > Br > I holds good
	(1) Electron affinity		(2) Electronegat	tivity
	(3) Atomic radius		(4) Boiling poin	it
57.	Which of the following	ng properties increases on g	going down from	F to I in Group VII-A of the
	(1) Fl (1) Fl (1) Fl (1)			
	(1) Electronegativity (3) Ionic radius		(2) Volatile nati (4) Oxidising p	lre
58.	Among the halogens, the	ne one which is oxidised by n	itric acid i	5wei
201	(1) Fluorine	(2) Iodine	(3) Chlorine	(4) Bromine
59.	The reaction of the typ	be $2X_2 + S \rightarrow SX_4$ is shown by	sulphur when X is	5
	(1) Fluorine or chlorin	ne	(2) Chlorine onl	ly
	(3) Chlorine and bron	nine only	(4) None	-
60.	When I_2 is passed through the second sec	ugh <i>KCl, KF</i> and <i>KBr</i> solut	ions	
	(1) Cl_2 and Br_2 are evolution evolution of Br_2 are evolution of Rr_2 and Rr_2 are evolution of Rr_2 are evolution of Rr_2 and Rr_2 are evolution of Rr_2 are evolution of Rr_2 and Rr_2 are evolution of Rr_2 are evolution of Rr_2 and Rr_2 are evolution of	olved	(2) Cl_2 is evolve	ed
	(3) Cl_2 , Br_2 and F_2 are e	evolved	(4) None of the	ese
61.	The solubility of I_2 in	creases in water in the prese	ence of	
	(1) <i>KI</i>	(2) H_2SO_4	(3) $KMnO_4$	(4) <i>NH</i> ₃
62.	Which of the hydrogen	n halides forms salts like KH	X_2 (where X is a h	alogen atom)
	(1) <i>HF</i>	(2) <i>HCl</i>	(3) <i>HI</i>	(4) <i>HBr</i>
63.	With cold and dilute se	odium hydroxide fluorine re	eacts to give	
	(1) <i>NaF</i> and OF_2	(2) $NaF + O_3$	(3) O_2 and O_3	(4) $NaF + O_2$
64.	Which one of the follo	owing oxides is expected exh	nibit paramagnetic	e behaviour
	(1) CO_2	(2) SO_2	(3) ClO_2	(4) SiO_2
65.	Of the following acids	, the one that is strongest is		
	(1) $HBrO_4$	(2) <i>HOCl</i>	(3) <i>HNO</i> ₂	(4) H_3PO_3
66.	Which of the following	g is anhydride of perchloric	acid	
	(1) Cl_2O_7	(2) Cl_2O_5	(3) Cl_2O_3	(4) <i>HClO</i>
67.	I_2 dissolves in <i>KI</i> solu	tion due to the formation of	2	
	(1) KI_2 and I^-	(2) K^+, I^- and I_2	(3) KI_3^-	(4) None of these
68.	Which of the following	g noble gas does not have an	n octet of electron	s in its outermost shell
	(1)Neon	(2) Radon	(3) Argon	(4) Helium

69. The low chemical read	69. The low chemical reactivity of the rare gases can be attributed to their				
(1) Being non-metals		(2) Having hig	(2) Having high ionization energies		
(3) Being gases		(4) Found in na	ature in small quantities		
70. Percentage of Ar in air	r is about				
(1) 1%	(2) 2%	(3) 3%	(4) 4%		
71. Which of the following	g is not obtained by dire	ect reaction of constitu	uent elements		
(1) XeF_2	(2) XeF_4	(3) XeO_3	(4) XeF_{6}		
72. Fluorine forms chemic	al compounds with				
(1) <i>He</i>	(2) Ne	(3) Ar	(4) <i>Xe</i>		
73. Which of the following	g has sp^3 hybridisation				
(1) XeO_3	(2) BCl_3	(3) XeF_4	(4) BBr_3		
74. Which element out of	He, Ar, Kr, and Xe for	ms least number of co	ompounds		
(1) <i>He</i>	(2) <i>Ar</i>	(3) Kr	(4) Xe		
75. Which of the followin	g exhibits the weakest	intermolecular forces			
(1) <i>He</i>	(2) <i>HCl</i>	(3) <i>NH</i> ₃	$(4) H_2 O$		
Zero group element an	re attached with weak in	ntermolecular force.			
76. of the following are fo	rmed by Xenon				
(1) XeF_3	(2) XeF_4	(3) XeF_5	(4) XeF_{6}		
77. Among the following	molecule				
(1) XeO_3	(2) $XeOF_4$	(3) XeF_6			
Those having same m	umber of lone pairs on .	<i>Xe</i> are			
(1) (i) and (ii) only	((2) (i) and (iii) only			
(3) (ii) and (iii) only	((4) (i),(ii) and (iii)			
$XeO_3:$					
of II No					

78. Who among the following first prepared a stable compound of noble gas

- (1) Rutherford (2) Rayleigh
- (3) Ramsay (4) Neil Bartlett
- **79.** The last member of inert gas elements is
 - (1) Helium (2) Neon
 - (3) Argon (4) Radon
- 80. Which of the following gas is/are called rare gas

(1) Ne (2) He (3) Kr

(4) All of these

- **81.** Which one of the following statements regarding helium is incorrect
 - (1) It is used to produce and sustain powerful superconducting magnets
 - (2) It is used as a cryogenic agent for carrying out experiments at low temperatures
 - (3) It is used to fill gas balloons instead of hydrogen because it is lighter and non-inflammable
 - (4) It is used in gas-cooled nuclear reactors
- **82.** Which of the following inert gas liquifies easily

	(1) <i>Kr</i>	(2) <i>He</i>	(3) <i>Ne</i>	(4) <i>Ar</i>					
<i>83</i> .	The oxidation number of	f xenon in $XeOF_2$ is		(4) Ar (4) 3					
	(1) Zero	(2) 2	(3) 4	(4) 3					
84.	Which inert gas having highest boiling point								
	(1) <i>Xe</i>	(2) Ar	(3) <i>Kr</i>	(4) <i>He</i>					
85.	Which of the following is an inert gas								
	(1) H_2	(2) <i>O</i> ₂	$(3) N_2$	(4) Argon					
86	Which of the following is planar								
	(1) XeF_2	(2) XeO_3F	$(3) XeO_2F_2$	$(4) XeF_4$					

SR MPC . Time:	JEE MAINS	5		UNI ASSIGNI	T – II MENT –	2		Date: 2 M	22-04-2020 lax. Marks
		-		MAT	T <u>HS</u>	-	-	1	
1) 4	2) 1	3) 2	4) 2	5) 4	6) 1	7) 3	8) 1	9) 3	10) 3
11) 2	12) 1	13) 2	14) 3	15) 3	16) 3	17) 3	18) 3	19) 2	20) 2
21) 2	22) 2	23) 2	24) 3	25) 2	26) 2	27) 3	28) 4	29) 3	30) 2
31) 2	32) 1	33) 4	34) 1	35) 2	36) 2	37) 3	38) 3	39) 3	40) 4
41) 4	42) 3	43) 3	44) 4	45) 1	46) 2	47) 2	48) 2	49) 1	50) 4
51) 2	52) 1	53) 3	54) 1	55) 2	56) 4	57) 3	58) 2,3	59) 1,4	60) 4
61) 1	62) 2	63) 2	64) 2	65) 1,4	66) 1	67) 2,3	68) 4	69) 2	70) 1
71) 3	72) 1	73) 2	74) 4	75) 3	76) 4	77) 2	78) 3	79) 1	80) 2
81) 1	82) 3	83) 1	84) 4	85) 1			_		
				PHYS	L SICS				
1) 2	2) 3	3) 2	4) 2	5) 3	6) 1	7) 4	8) 1	9) 1	10) 4
11) 1	12) 2	13) 4	14) 1	15) 3	16) 4	17) 4	18) 1	19) 3	20) 1
21) 2	22) 2	23) 4	24) 3	25) 1	26) 1	27) 1	28) 1	29) 1	30) 1
31) 1	32) 4	33) 2	34) 1	35) 1	36) 1	37) 1	38) 3	39) 4	40) 2
41) 1	42) 4	43) 4	44) 2	45) 4	46) 2	47) 1	48) 4	49) 1	50) 3
51) 4	52) 4	53) 1	54) 2	55) 3	56) 3	57) 3			
	-			<u>CHEMI</u>	ISTRY				
1) 2	2) 3	3) 1	4) 1	5) 3	6) 2	7) 2	8) 4	9) 1	10) 1
11) 2	12) 4	13) 1	14) 2	15) 4	16) 2	17) 1	18) 1	19) 4	20) 2
21) 4	22) 3	23) 3	24) 4	25) 4	26) 2	27) 1	28) 4	29) 2	30) 3
31) 4	32) 2	33) 4	34) 1	35) 3	36) 2	37) 2	38) 1	39) 3	40) 4
41) 4	42) 1	43) 2	44) 1	45) 1	46) 3	47) 3	48) 3	49) 2	50) 1
51) 1	52) 2	53) 3	54) 3	55) 2	56) 2	57) 3	58) 2	59) 4	60) 4
61) 1	62) 1	63) 1	64) 3	65) 1	66) 1	67) 3	68) 4	69) 2	70) 1
71) 3	72) 4	73) 1	74) 1	75) 1	76) 2	77) 4	78) 4	79) 4	80) 4
81) 3	82) 1	83) 3	84) 1	85) 4	86) 4				
-									

MELUHA INTERNATIONAL SCHOOL HYDERABAD

HINTS & SOLUTIONS <u>MATHS</u>

6. (1)

14. (3)

$$\tan A = \frac{4}{3} \text{ and } \tan B = \frac{12}{5} \cdot \text{Clearly, } \tan C \text{ should be such that}$$

$$\tan A + \tan B + \tan C = \tan A \tan B \tan C$$

$$\therefore \frac{4}{3} + \frac{12}{5} + \tan C = \frac{4}{3} \cdot \frac{12}{5} \cdot \tan C \quad \text{or} \quad \frac{56}{15} + \tan C = \frac{16}{5} \tan C$$

$$\text{Or} \quad \tan C = \frac{56}{33}$$

$$\therefore \cot C = \frac{33}{65} = 0.508$$
15. (3)

$$a^{2} \sin 2B + b^{2} \sin 2A = 2a^{2} \sin B \cdot \cos B + 2b^{2} \sin A \cos A$$

$$= \frac{a^{2}b}{R} \cos B + \frac{b^{2}a}{R} \cos A$$

$$= \frac{ab}{R} (a \cos B + b \cos A) = \frac{abc}{R} = 2bc \sin A$$

$$= 4\left(\frac{1}{2}bc \sin A\right) = 4 \times 1.2 = 4.8$$

16. (3)

Use cosine formula.

17. (3)

$$2s(2s-2c) = ab \quad or \quad \frac{s(s-c)}{ab} = \frac{1}{4}$$

Or
$$\cos^{2}\frac{C}{2} = \frac{1}{4} \quad or \quad \cos\frac{C}{2} = \frac{1}{2} \quad \left(\because\frac{C}{2} \text{ must be acute}\right)$$

18. (3)

Clearly, A = 45°, B = 75°, C = 60°. So $\frac{a}{\sin 45°} = \frac{b}{\sin 75°} = \frac{c}{\sin 60°} = 2R$ $\therefore a = \sqrt{2}R, b = \frac{\sqrt{3} + 1}{\sqrt{2}}R, c = \sqrt{3}R$ Now, a + b + c $\sqrt{2} = \left(\sqrt{2} + \frac{\sqrt{3} + 1}{\sqrt{2}} + \sqrt{6}\right)R = 3b$

19. (2)

Clearly, the roots of $x^2 + \sqrt{2}x + 1 = 0$ are non real complex. So, one root common implies both roots are common.

So,
$$\frac{a}{1} = \frac{b}{\sqrt{2}} = \frac{c}{1} = k$$

 $\therefore \cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{k^2 + 2k^2 - k^2}{2 \cdot k \cdot \sqrt{2} \cdot k} = \frac{1}{\sqrt{2}}$

20. (2)Here $a + b = 2\sqrt{3}$, ab = 2 and $C = \frac{\pi}{2}$ $\cos C = \frac{a^2 + b^2 - c^2}{2ab} \implies \frac{1}{2} = \frac{a^2 + b^2 - c^2}{2ab} \implies a^2 + b^2 - c^2 = ab$ Or $(a+b)^2 - 2ab - c^2 = ab$ or $12-4-c^2 = 2$ or $c = \sqrt{6}$ the perimeter = $a + b + c = 2\sqrt{3} + \sqrt{6}$ *.*.. 21. (2)22. (2)Clearly, $\tan \frac{A}{2} > \tan \frac{B}{2}$; $\therefore \frac{A}{2} > \frac{B}{2}$ or A > B $\tan\frac{A+B}{2} = \frac{\frac{5}{6} + \frac{20}{37}}{1 - \frac{5}{6} \cdot \frac{20}{37}} = \frac{305}{122} \quad \text{Or} \quad \tan\frac{C}{2} = \frac{305}{122}$ As $\frac{20}{37} > \frac{122}{305}$, we get $\tan \frac{B}{2} > \tan \frac{C}{2} \implies \frac{B}{2} > \frac{C}{2}$ i.e., B > C $\therefore a > b > c$ $\therefore A > B > C$ \therefore 2a > b + c and a +b > 2c (2) Clearly, A > B (:: a > b) 23. Now $\tan \frac{A-B}{2} = \frac{a-b}{a+b} \cot \frac{C}{2} \implies \tan 30 = \frac{1}{3} \cot \frac{C}{2}$ $\therefore \sqrt{3} = \cot \frac{C}{2} \text{ or } \frac{C}{2} = \frac{\pi}{6}$ 24. (3) $\tan \frac{A-B}{2} = \frac{1}{3} \tan \frac{A+B}{2} = \frac{1}{3} \cot \frac{C}{2}$ $\Rightarrow \frac{a-b}{a+b} = \frac{1}{3}$ 25. $\frac{1}{2}b\sin\frac{2\pi}{2} = \frac{9\sqrt{3}}{2}$ or $\frac{1}{2}\cdot\frac{\sqrt{3}}{2}\cdot bc = \frac{9\sqrt{3}}{2} \Rightarrow bc = 18$ Also, $\cos \frac{2\pi}{3} = \frac{b^2 + c^2 - a^2}{2bc} \Rightarrow -\frac{1}{2} = \frac{(b-c)^2 + 2bc - a^2}{2bc}$ Or $(b-c)^2 + 3bc - a^2 = 0$ or $27 + 54 = a^2$ (2) cot A, cot B, cot C are in AP 26. $\Rightarrow \frac{b^2 + c^2 - a^2}{2bc \cdot \frac{a}{2R}}, \frac{c^2 + a^2 - b^2}{2ca \cdot \frac{b}{2R}}, \frac{a^2 + b^2 - c^2}{2ab \cdot \frac{c}{2R}} \text{ are in AP}$ $\Rightarrow b^2 + c^2 - a^2, c^2 + a^2 - b^2, a^2 + b^2 - c^2$ are in AP $\Rightarrow -2a^2, -2b^2, -2c^2$ are in AP (subtracting $a^2 + b^2 + c^2$ from each) 27. (3)

Page | 24

$$\frac{2R \sin A}{\cos A} = \frac{2R \sin B}{\cos B} \quad \text{or } \sin A \cos B = \cos A \sin B$$
Or $2 \sin A \cos B = \cos A \sin B + \sin A \cos B = \sin (A + B) = \sin C$
28. (4)
$$3 \sin A = \sin B + \sin C \Rightarrow 6 \sin \frac{A}{2} \cdot \cos \frac{A}{2} = 2 \sin \frac{B + C}{2} \cdot \cos \frac{B - C}{2}$$

$$\Rightarrow 3 \cos \frac{B + C}{2} = \cos \frac{B - C}{2}$$

$$\Rightarrow 3 \left(\cos \frac{B}{2} \cdot \cos \frac{C}{2} - \sin \frac{B}{2} \cdot \sin \frac{C}{2} \right) = \cos \frac{B}{2} \cdot \cos \frac{C}{2} + \sin \frac{B}{2} \sin \frac{C}{2}$$

$$\Rightarrow 2 \cos \frac{B}{2} \cdot \cos \frac{C}{2} = 4 \sin \frac{B}{2} \sin \frac{C}{2} \Rightarrow \tan \frac{B}{2} \cdot \tan \frac{C}{2} = \frac{1}{2}$$
29. (3)
$$1 + b + c = 6 \cdot \frac{\sin A + \sin B + \sin C}{3} = 2 \left(\frac{1}{2R} + \frac{b}{2R} + \frac{c}{2R} \right) = \frac{1}{R} (1 + b + c)$$

$$\therefore R = 1 \quad (\because 1 + b + c \neq 0)$$
So, $\frac{1}{\sin A} = 2R = 2 \Rightarrow A = \frac{\pi}{6}$
30. (2)
Sin A, sin B, sin C are in AP
$$\Rightarrow \frac{2A}{2R}, \frac{2A}{2R}, \frac{2A}{h_3} \text{ are in } AP \Rightarrow a, b, c \text{ are in } AP$$

$$\Rightarrow \frac{2A}{h_1}, \frac{2A}{h_2}, \frac{2A}{h_3} \text{ are in } AP \Rightarrow \frac{1}{h_1}, \frac{1}{h_2}, \frac{1}{h_3} \text{ are in } AP$$
Now medians are $\sqrt{\frac{c^2 + b^2}{2} - \frac{a^2}{4}}, \sqrt{\frac{a^2 + b^2}{2} - \frac{b^2}{4}}, \sqrt{\frac{a^2 + b^2}{2} - \frac{c^2}{4}}$
These are neither in AP nor GP.
31. (2)
$$\frac{1}{2}\alpha \cdot a = \Delta; \qquad \therefore \frac{1}{\alpha} = \frac{a}{2\Delta} \cdot \text{Similarly for others.}$$

$$\therefore \alpha^{-1} + \beta^{-1} + \gamma^{-1} = \frac{1}{2\Delta} (a + b + c) = \frac{S}{\Delta}$$
32. (1)
$$\frac{S}{R} = \frac{(a + b + c)}{2R} = \frac{a}{2R} + \frac{b}{2R} + \frac{c}{2R} = \sin A + \sin B + \sin C$$
33. (4)
34. (1)
$$(\alpha - \beta) + \alpha + (\alpha + \beta) = 180^\circ \text{ and } \alpha + \beta = 90^\circ$$

$$\therefore \text{ the angles are 30^\circ, 60^\circ, 90^\circ$$

$$\therefore \frac{a}{\sin 30^\circ} = \frac{b}{\sin 60^\circ} = \frac{c}{\sin 90^\circ} = 2R \text{ or } a = R, b = \sqrt{3}R, c = 2R$$

$$r = \frac{A}{s} = \frac{\frac{1}{2}R \cdot \sqrt{3}R}{\frac{1}{2}(R + \sqrt{3}R + 2R)} = \frac{\sqrt{3}R}{3 + \sqrt{3}}$$
and $2s = R + \sqrt{3}R + 2R = (3 + \sqrt{3})R$

$$\therefore \frac{r}{2s} = \frac{\sqrt{3R}}{3+\sqrt{3}} \times \frac{1}{(3+\sqrt{3}R)} = \frac{1}{(3+\sqrt{3})(\sqrt{3}+1)}$$
$$= \frac{1}{6+4\sqrt{3}} = \frac{1}{2\sqrt{3}(2+\sqrt{3})} = \frac{2-\sqrt{3}}{2\sqrt{3}}$$

(2); $\cot A \cdot \cot B \cdot \cot C > 0 \Rightarrow \cot A > 0$, $\cot B > 0$, $\cot C > 0$ because two or more of $\cot A$, $\cot B$, $\cot C$ cannot be negative at the same time in a triangle. 35. 36. (2)

$$r.r_1.r_2.r_3 = \frac{\Delta}{s}.\frac{\Delta}{s-a}.\frac{\Delta}{s-b}.\frac{\Delta}{s-c} = \frac{\Delta^4}{\Delta^2} = \Delta^2$$

37. (3)

Here
$$\Delta = a^2 - (b^2 - c^2) \Rightarrow \Delta = (2s - 2c)(2s - 2b) = 4(s - b)(s - c)$$

$$\therefore \quad \frac{1}{4} = \frac{(s - b)(s - c)}{\Delta} = \tan \frac{A}{2} \Rightarrow \quad \tan A = \frac{2\tan \frac{A}{2}}{1 - \tan^2 \frac{A}{2}} = \frac{2 \times \frac{1}{4}}{1 - \left(\frac{1}{4}\right)^2}$$

(3) 38.

$$A = \pi - \frac{\pi}{4} - \frac{\pi}{6} = 105^{\circ}$$

So, $\frac{\sqrt{3} + 1}{\sin 105^{\circ}} = \frac{c}{\sin \frac{\pi}{6}} \implies c = \frac{\frac{\sqrt{3} + 1}{2}}{\frac{\sqrt{3} + 1}{2\sqrt{2}}} = \sqrt{2}$
 $\therefore \text{ area} = \frac{1}{2}ac \sin B = \frac{1}{2} \cdot (\sqrt{3} + 1)\sqrt{2} \cdot \sin \frac{\pi}{4}$
(3)

39.

Expression =
$$\frac{b^2 + c^2 - a^2}{2abc} + \frac{c^2 + a^2 - b^2}{2abc} + \frac{a^2 + b^2 - c^2}{2abc} = \frac{a^2 + b^2 + c^2}{2abc}$$

= $\frac{(a+b+c)^2 - 2(ab+bc+ca)}{2abc} = \frac{11^2 - 2.38}{2.40} = \frac{9}{16}$

40. (4) Here a = 4k, b = 5k, c = 6k
$$\therefore s = \frac{15k}{2}$$

 $\therefore \Delta = \sqrt{\frac{15k}{2} \left(\frac{15k}{2} - 4k\right) \left(\frac{15k}{2} - 5k\right) \left(\frac{15k}{2} - 6k\right)} = \frac{15\sqrt{7}}{4} k^2$
But R = $\frac{abc}{4\Delta} = \frac{4k \cdot 5k \cdot 6k}{15\sqrt{7}k^2} = \frac{8}{\sqrt{7}} k$
And r = $\frac{\Delta}{s} = \frac{15\sqrt{7}}{4} k^2 \cdot \frac{2}{15k} = \frac{\sqrt{7}}{2} k$
 $\therefore \frac{R}{r} = \frac{8k}{\sqrt{7k}/2} = \frac{16}{7}$

41.

(4)

 $\frac{r}{R} = \frac{a\cos A + b\cos B + c\cos C}{a + b + c} = \frac{3k\cos 60^{\circ}}{3k} = \frac{1}{2}, \text{ where side} = k, \text{ angle} = 60^{\circ} \text{ in an equilateral triangle.}$ 42. $3 \sin x + \cos x + \tan x + \cot x + \sec x + \csc x = 7$ $\Rightarrow (\sin x + \cos x) + \left(\frac{1}{\sin x \cos x}\right) + \frac{(\sin x + \cos x)}{\sin x \cos x} = 7$ $\Rightarrow (\sin x + \cos x) \left(1 + \frac{2}{\sin 2x}\right) = \left(7 - \frac{2}{\sin 2x}\right)$ $\Rightarrow (1 + \sin 2x) \left(1 + \frac{4}{\sin^2 2x} + \frac{4}{\sin 2x}\right) = 49 + \frac{4}{\sin^2 2x} - \frac{28}{\sin 2x} \text{ (squaring both sides)}$ $\Rightarrow \sin^3 2x - 44 \sin^2 2x + 36 \sin 2x = 0$ $\Rightarrow \sin^2 2x - 22 - 8\sqrt{7}.$ 43. 3 $\tan(\pi \cos \theta) = \cot(\pi \sin \theta) \Rightarrow \pi \cos \theta = \left(\frac{\pi}{2} - \pi \sin \theta\right) + n\pi$ $\Rightarrow \cos \theta + \sin \theta = n + \frac{1}{2}, n \in I \Rightarrow \sin \theta + \cos \theta = \frac{1}{2}, -\frac{1}{2} \Rightarrow \sin \theta \cos \theta = -\frac{3}{8}$ $\Rightarrow \cos \theta, \sin \theta \text{ are roots of the equation } \Rightarrow 8x^2 \pm 4x - 3 = 0.$

44.

4

$$\tan^{-1}\frac{(\sin 1 - 1)}{\cos 1} = -\tan^{-1}\frac{(1 - \sin 1)}{\cos 1} = -\tan^{-1}\frac{\left(1 - \tan\frac{1}{2}\right)}{\left(1 + \tan\frac{1}{2}\right)} = -\left(\frac{\pi}{4} - \frac{1}{2}\right) = \frac{1}{2} - \frac{\pi}{4}$$

45. 1

$$\tan \alpha \tan 2\alpha \tan 3\alpha \dots \tan(2n-1)\alpha$$

= { $\tan \alpha \tan(2n-1)\alpha$ } { $\tan 2\alpha \tan(2n-2)\alpha$ } { $\tan(n-1)\alpha \tan(n+1)\alpha$ } $\tan n\alpha$,
= { $\tan \alpha \tan(\pi/2 - \alpha)$ } { $\tan 2\alpha \tan(\pi/2 - 2\alpha)$ } $\tan \frac{\pi}{4} = 1.1.1....1 = 1$

46.

2

 α and β are the roots of the equation $x \cos \theta + y \sin \theta = 2a \Rightarrow \cos \alpha \cos \beta = \frac{4a^2 - y^2}{x^2 + y^2}$.

47. 2
We know that
$$\cos(\sin^{-1}x) = \sqrt{1-x^2}$$

 $\sin(\cos^{-1}x) = \sqrt{1-x^2}$
 $\Rightarrow \sin^{-1}(\cos(\sin^{-1}x)) + \cos^{-1}(\sin(\cos^{-1}x)) = \pi/2$
 $\Rightarrow \tan[\sin^{-1}(\cos(\sin^{-1}x))]$. $\tan[\cos^{-1}(\sin(\cos^{-1}x))] = 1$.
48. 2
 $3 \sin \alpha < \sin \alpha + \sin \beta + \sin \gamma < 3 \sin \gamma$
Also, $\frac{1}{3\cos \alpha} < \frac{1}{\cos \alpha + \cos \beta + \cos \gamma} < \frac{1}{3\cos \gamma}$
Multiplying $\tan \alpha < \frac{\sin \alpha + \sin \beta + \sin \gamma}{\cos \alpha + \cos \beta + \cos \gamma} < \tan \gamma$.

49.

1

From the graph it is clear that $\cos x > 1 - \frac{2x}{\pi}$

50. **4** We have
$$\sin^{3} 10^{9} + \sin^{2} 50^{9} - \sin^{2} 70^{9}$$

$$= \frac{1}{4} [(3 \sin 10^{9} - \sin 30^{9}) + (3 \sin 50^{9} - \sin 150^{9}) - (3 \sin 70^{9} - \sin 210^{9})]$$

$$= \frac{1}{4} [3(\sin 10^{9} - \sin 50^{9} - \sin 70^{9}) - \frac{3}{2}]$$

$$= \frac{1}{4} [3(\sin 10^{9} - 2\cos 60^{9} \cdot \sin 10^{9}) - \frac{3}{2}] = -\frac{3}{8}.$$
51. **2**

$$\tan \theta = \frac{3\tan^{9} - \tan^{3} \frac{\theta}{3}}{1 - 3\tan^{2} \frac{\theta}{3}} = \lambda.$$

$$\tan^{3} \frac{\theta}{3} - 3\lambda \tan^{2} \frac{\theta}{3} - 3 \tan^{2} \frac{\theta}{3} + \lambda = 0$$

$$\sum \tan^{9} \frac{1}{3} \frac{1}{33} = -3.$$
52. **1** In $AABC$

$$\sin(A + B + C) = 0$$

$$= \sin A \cos \cos C + \sin B \csc C \cos A + \sin C \cos A \cos B - \sin A \sin B \sin C$$

$$\Rightarrow xyz = x\sqrt{(1 - y^{2})(1 - z^{2})} + y\sqrt{(1 - x^{2})(1 - z^{2})} + z\sqrt{(1 - x^{2})(1 - x^{2})}$$
53. **3** $\cos \alpha + \cos \beta = -\frac{b}{a}$ (1)

$$\cos \alpha \cos \beta = \frac{1}{a}$$

$$\sin \alpha + \sin \beta = -\frac{p}{a}$$

$$\ldots... (2)$$

$$\sin \alpha \sin \beta = \frac{1}{a}$$
Squaring and adding (1) and (2)

$$2 + 2[\cos \alpha \cos \beta + \sin \alpha \sin \beta] = \frac{p^{2} + b^{2}}{a^{2}}$$

$$\Rightarrow 2a(a+2) = b^{2} + p^{2}$$
54. **1** $\tan^{2}(\theta - \phi) = \frac{(n - 1)^{2} \tan^{2} \phi}{(1 + n^{2}) \tan^{4} \phi} + 2\pi \tan^{2} \phi} = \frac{(n - 1)^{2}}{4n}$
55. **2** Let $\tan \frac{\pi}{6} = x$

$$\Rightarrow \frac{\pi}{8} = \tan^{-1} x$$

$$\Rightarrow 4 \tan^{-1} x = \frac{\pi}{2}$$

= cos x

π/2

 $y = 1 - 2x/\pi$

$$\Rightarrow 2 \times \tan^{-1} \frac{2x}{1-x^2} = \frac{\pi}{2}$$

$$\Rightarrow \tan^{-1} \frac{4x}{1-\frac{x^2}{1-\left(\frac{2x}{1-x^2}\right)^2}} = \frac{\pi}{2}$$

$$\Rightarrow \tan^{-1} \frac{4x(1-x^2)}{1-6x^2+x^4} = \frac{\pi}{2}$$

$$\Rightarrow x^4 - 6x^2 + 1 = 0$$
56. 4
Area of triangle $\rightarrow \frac{1}{2}a^2 \left| (\cot \theta_1 - \cot \theta_2) \right|$

$$= \frac{1}{2}a^2 \left| \frac{\tan \theta_1 - \tan \theta_2}{\tan \theta_1 \tan \theta_2 \pi} \right| = \frac{1}{2}\frac{a^2(a+2)}{(a+1)}$$
57. 3
Weighted A.M. \geq H.M.
$$\frac{a \sin \theta_1 + b \sin \theta_2 + c \sin \theta_3}{a + b + c} \geq \frac{a + b + c}{\frac{a}{\sin \theta_1} + \frac{b}{\sin \theta_2} + \frac{c}{\sin \theta_2}}$$

$$\Rightarrow (a \sin \theta_1 + b \sin \theta_2 + c \sin \theta_3) (a \csc \theta_1 + b \csc \theta_2 + c \csc \theta_3) \geq 2^2 \geq 4.$$
58. 2,3
tan 10⁹ < tan 15⁹ = $2 - \sqrt{3} < 2$
tan 30⁹ = $\frac{3 \tan 10^9 - \tan 310^9}{1 - 3 \tan^2 10^9}$
If tan 10⁹ is rational then tan 30⁰ must be rational which is not true.
 $\therefore \tan 30^9$ is irrational
59. 1,4 $\left(\cos^2 x + \frac{1}{\cos^2 x}\right)(1 + \tan^2 2y)(3 + \sin 3z) = 4$
Since, $\cos^2 x + \frac{1}{\cos^2 x} \geq 2$, $1 + \tan^2 2y \geq 1$, $2 \leq 3 + \sin 3z \leq 4$
So, the only possibility is
 $\cos^2 x + \frac{1}{\cos^2 x} \equiv 2$, $1 + \tan^2 2y = 1$, $3 + \sin 3z = 2$
 $\Rightarrow \cos x = \pm 1 \Rightarrow x = n\pi$
 $\tan 2y = 0 \Rightarrow y = \frac{m\pi}{2}$
 $\sin 3z = -1 \Rightarrow z = (4k - 1)\frac{\pi}{6}$; m, n, $k \in$
60. 4
 $\tan^{-1}\frac{(\sin 1 - 1)}{\cos 1} = -\tan^{-1}\frac{(1 - \tan \frac{1}{2})}{(1 + \tan \frac{1}{2})} = -\left(\frac{\pi}{4} - \frac{1}{2}\right) = \frac{1}{2} - \frac{\pi}{4}$
61. 1 $\tan \tan (2n - 1)\alpha$ { $\tan (2n - 1)\alpha$ { $\tan (n - 1)\alpha \tan(n + 1)\alpha$) $\tan n\alpha$,

62.

2

 α and β are the roots of the equation $x \cos \theta + y \sin \theta = 2a \Rightarrow \cos \alpha \cos \beta = \frac{4a^2 - y^2}{x^2 + y^2}$.

63. 2

We know that $\cos(\sin^{-1}x) = \sqrt{1-x^2}$ $sin(cos^{-1}x) = \sqrt{1-x^2}$ $\Rightarrow \sin^{-1}(\cos(\sin^{-1}x)) + \cos^{-1}(\sin(\cos^{-1}x)) = \pi/2$ $\Rightarrow \tan[\sin^{-1}(\cos(\sin^{-1}x))]. \tan[\cos^{-1}(\sin(\cos^{-1}x))] = 1.$ 64. 2 $3 \sin \alpha < \sin \alpha + \sin \beta + \sin \gamma < 3 \sin \gamma$ Also, $\frac{1}{3\cos\alpha} < \frac{1}{\cos\alpha + \cos\beta + \cos\gamma} < \frac{1}{3\cos\gamma}$ $Multiplying \ tan \ \alpha < \frac{\sin \alpha + \sin \beta + \sin \gamma}{\cos \alpha + \cos \beta + \cos \gamma} < tan\gamma.$ 65. 1,4 $\left(\cos^{2} x + \frac{1}{\cos^{2} x}\right)\left(1 + \tan^{2} 2y\right)(3 + \sin 3z) = 4$ Since, $\cos^2 x + \frac{1}{\cos^2 x} \ge 2$, $1 + \tan^2 2y \ge 1$, $2 \le 3 + \sin 3z \le 4$ So, the only possiblility is $\cos^2 x + \frac{1}{\cos^2 x} = 2$, $1 + \tan^2 2y = 1$, $3 + \sin 3z = 2$ $\Rightarrow \cos x = \pm 1 \Rightarrow x = n\pi$ $\tan 2y = 0 \implies y = \frac{m\pi}{2}$ $\sin 3z = -1 \implies z = (4k-1)\frac{\pi}{6}$; m, n, $k \in I$. 66. 1 From the graph it is clear that $\cos x > 1 - \frac{2x}{\pi}$

67. **2,3**

$$\tan 10^{0} < \tan 15^{0} = 2 - \sqrt{3} < 2$$

$$\tan 30^{0} = \frac{3 \tan 10^{0} - \tan^{3} 10^{0}}{1 - 3 \tan^{2} 10^{0}}$$
If $\tan 10^{0}$ is rational then $\tan 30^{0}$ must be rational which is not true.
 $\therefore \tan 30^{0}$ is irrational
68. **4** We have $\sin^{3} 10^{0} + \sin^{3} 50^{0} - \sin^{3} 70^{0}$

$$= \frac{1}{4} [(3 \sin 10^{0} - \sin 30^{0}) + (3 \sin 50^{0} - \sin 150^{0}) - (3 \sin 70^{0} - \sin 210^{0})]$$

$$= \frac{1}{4} \left[3(\sin 10^{0} + \sin 50^{0} - \sin 70^{0}) - \frac{3}{2} \right]$$

$$= \frac{1}{4} \left[3(\sin 10^{0} - 2\cos 60^{0} \cdot \sin 10^{0}) - \frac{3}{2} \right] = -\frac{3}{8}.$$

69. (2)
$$\tan \theta = \frac{3\tan^2 \frac{\theta}{3} - \tan^2 \frac{\theta}{3}}{1 - 3\tan^2 \frac{\theta}{3}} = \lambda$$

 $\tan^3 \frac{\theta}{3} - 3\lambda \tan^2 \frac{\theta}{3} - 3 \tan \frac{\theta}{3} + \lambda = 0$
 $\sum \tan \frac{\theta}{3} \tan \theta_2}{3} = -3.$
70. 1 In a ΔABC
Sin(A+ B+C)=0
 $= \sin \lambda \cos B \cosh C + \sin B \csc C \cos A + \sin C \cos A \cos B - \sin A \sin B \sin C$
 $\Rightarrow xyz = x\sqrt{(1-y^2)(1-z^2)} + y\sqrt{(1-x^2)(1-z^2)} + z\sqrt{(1-x^2)(1-x^2)}$
71. 3 $\cos \alpha + \cos \beta = -\frac{b}{a}$ (1)
 $\cos \alpha \cos \beta = \frac{1}{a}$
 $\sin \alpha + \sin \beta = -\frac{\beta}{a}$ (2)
 $\sin \alpha \sin \beta = \frac{1}{a}$
Squaring and adding (1) and (2)
 $2 + 2[\cos \alpha \cos \beta + \sin \alpha \sin \beta] = \frac{p^2 + b^2}{a^2}$
 $\Rightarrow 2a(a+2) = b^2 + p^2$
72. 1 $\tan^2(\theta - \phi) = \frac{(n-1)^2 \tan^2 \phi}{(n-1)^2 \tan^2 \phi + 2 \tan^2 \alpha^2 \phi} = \frac{(n-1)^2}{\cot^2 \phi + n^2 \tan^2 \phi + 2n}$
denominator is minimum at $\tan^2 \phi = 1/n$
So maximum value of $\tan^2 (\theta - \phi) is \frac{(n-1)^2}{4n}$
73. 2 Let $\tan \frac{\pi}{8} = x$
 $\Rightarrow \frac{\pi}{6} = \tan^{-1} x$
 $\Rightarrow 4 \tan^{-1} x = \frac{\pi}{2}$
 $\Rightarrow 2x \tan^{-1} \frac{2x}{(1-x^2)} = \frac{\pi}{2}$
 $\Rightarrow \tan^{-1} \frac{4x(1-x^2)}{(1-6x^2+x^4)} = \frac{\pi}{2} \Rightarrow x^4 - 6x^2 + 1 = 0$
74. 4
Area of triangle $\Rightarrow \frac{1}{2}a^2 |(\cot \theta_1 - \cot \theta_2)|$
 $= \frac{1}{2}a^2 |\frac{\tan \theta_1 - \tan \theta_2}{\tan \theta_1 \tan \theta_2}| = \frac{1}{2}\frac{a^2(a+2)}{(a+1)}$

75. 3 Weighted A.M. \geq H.M. $\frac{a \sin \theta_1 + b \sin \theta_2 + c \sin \theta_3}{a + b + c} \geq \frac{a + b + c}{\frac{a}{\sin \theta_1} + \frac{b}{\sin \theta_2} + \frac{c}{\sin \theta_2}}$ \Rightarrow (a sin θ_1 + b sin θ_2 + c sin θ_3) (a cosec θ_1 + b cosec θ_2 + c cosec θ_3) $\ge 2^2 \ge 4$. 4 $y^2 - y + a = \left(y - \frac{1}{2}\right)^2 + a - \frac{1}{4}$. 76. Since $-\sqrt{2} \le \sin x + \cos x \le \sqrt{2}$, given equation will have no real value of x for any y if $a - \frac{1}{4} > \sqrt{2}$ i.e. $a \in \left(\sqrt{2} + \frac{1}{4}, \infty\right) \Rightarrow a \in (\sqrt{3}, \infty)$ (as $\sqrt{2} + 1/4 < \sqrt{3}$) (2) 4 $[1 + \cot^2 \pi(a + x)] + a^2 - 4a = 0$ 77. $4\cot^2\pi (a + x) + (a - 2)^2 = 0$ \Rightarrow a - 2 = 0 and cot² π (a + x) = 0 $\Rightarrow a = 2.$ 3 Let $\frac{1}{2}\cos^{-1}\frac{a}{b} = \theta, \theta \in [0, \pi/2]$ (as $\cos^{-1}(a/b) \in [0, \pi]$) 78. $\Rightarrow \cos 2\theta = \frac{a}{b} \Rightarrow 2\cos^2 \theta = \frac{a+b}{b} \Rightarrow \cos \theta = \sqrt{\frac{a+b}{2b}} \text{ (since } \theta \in [0, \pi/2]$ and $\cos\left(\frac{\pi}{4} + \theta\right) + \cos\left(\frac{\pi}{4} - \theta\right) = 2\cos\frac{\pi}{4}\cos\theta = \sqrt{2}\cos\theta$ $=\sqrt{2}\cdot\sqrt{\frac{a+b}{2b}}=\sqrt{\frac{a+b}{b}}.$ 4 $\log_2 x < \sin^{-1} \sin [2\pi + (-2\pi + 5)]$ 79. $\log_2 x < 5 - 2\pi$ $x < 2^{5-2\pi}$ and x > 0 $2 \frac{\cos^{10} y + \sec^{10} y}{2} \ge \left(\cos^{10} y \sec^{10} y\right)^{1/2}$ 80. $\Rightarrow \cos^{10} v + \sec^{10} v \ge 2$ But $\sqrt{3} \cos x - \sin x \le 2$ Therefore $\sqrt{3} \cos x - \sin x = (\cos^{10} y + \sec^{10} y) = 2$ $\Rightarrow \frac{\sqrt{3}}{2}\cos x - \frac{1}{2}\sin x = 1 \Rightarrow x = -\frac{\pi}{6}.$ 1 Let $a^{cosx} = t \Longrightarrow t + \frac{1}{t} = 6 \implies t^2 - 6t + 1 = 0$ 81. $y = \log_a(3 + 2\sqrt{2})$ $\Rightarrow t = \frac{6 \pm \sqrt{36 - 4}}{2} = 3 \pm 2\sqrt{2}$ $\Rightarrow a^{\cos x} = 3 \pm 2\sqrt{2} \Rightarrow \cos x = \log_a(3 \pm 2\sqrt{2})$ 0 since a > 1, for all the roots to be real, we must have $y = \log_a(3 - 2\sqrt{2})$ $\log_{a}(3+2\sqrt{2}) \le 1$ and $\log_{a}(3-2\sqrt{2}) \ge -1$, both are -1 true for $a \ge 3 + 2\sqrt{2}$.

82.

1

4

$$|\sin^{-1}x| + \cos^{-1}x = \frac{\pi}{2} \implies |\sin^{-1}x| = \sin^{-1}x$$
$$\implies x \in [0, 1].$$

84.

$$\begin{aligned} & 2^{2\pi/\sin^{-1}x} - 2(a+2)2^{\pi/\sin^{-1}x} + 8a < 0 \\ & (2^{\pi/\sin^{-1}x} - 4)(2^{\pi/\sin^{-1}x} - 2a) < 0 \end{aligned}$$

Both roots should be real and distinct $\Rightarrow a \in \left[0, \frac{1}{8}\right] \cup [2, \infty)$. As $2^{\pi/\sin^{-1}x} \in \left(0, \frac{1}{4}\right] \cup [4, \infty)$.

85.

PHYSCIS

(2) For critical damping $b^2 = 4mK$ 1. $\Rightarrow b = \sqrt{4mK} = 2\sqrt{Km}$ (3)

2.

Displacement of the particle is given as $x = 4(\cos \pi t + \sin \pi t) = \frac{4}{\sqrt{2}} \times \sqrt{2} [\cos \pi t + \sin \pi t]$

$$\left[\frac{1}{\sqrt{2}}\cos\pi t + \frac{1}{\sqrt{2}}\sin\pi t\right] 4\sqrt{2} = \left[\sin\frac{\pi}{4}\cos\pi t + \cos\frac{\pi}{4}\sin\pi t\right] 4\sqrt{2}$$
$$\left[\because\sin A\cos B + \cos A + \sin B = \sin\left(A + B\right)\right]$$

So, amplitude = $4\sqrt{2}$

3. (2)

For forced oscillation, the displacement is given by

4. (2)
$$\omega = \sqrt{\frac{K}{M}} \Rightarrow \frac{\omega_1}{\omega_2} = \sqrt{\frac{M_2}{M_1}}$$

Here
$$M_1 = M, M_2 = M + m$$

$$\frac{\omega_1}{\omega_2} = \sqrt{\frac{m+M}{M}}$$

Linear momentum before= Linear momentum after

$$M_{1}A_{1}\omega_{1} = M_{2}A_{2}\omega_{2}$$

$$\frac{A_{1}}{A_{2}} = \frac{M+m}{M}\sqrt{\frac{M}{M+m}} = \sqrt{\frac{M+m}{M}}$$
5. (3) $A = A_{0}e^{-Kt}$
 $0.9A_{0} = A_{0}e^{-5K}$(1)
 $\alpha A_{0} = A_{0}e^{-15K}$(2)
 $\Rightarrow \frac{\alpha}{0.9} = e^{-10}K = (0.9)^{2}$
On solving $\alpha = 0.729$

6. (1)

$$\tau = -2Kc \frac{\ell}{2} \cos \theta \implies \tau = -\left(\frac{K\ell^2}{2}\right)\theta = -C\theta$$
$$\implies f = \frac{1}{2\pi} \sqrt{\frac{C}{I}} = \frac{1}{2\pi} \sqrt{\frac{\frac{K\ell^2}{2}}{\frac{M\ell^2}{12}}}$$
$$\implies f = \frac{1}{2\pi} \sqrt{\frac{6K}{M}}$$

7. (4)
$$\omega = \sqrt{\frac{K}{m}} = 5 rad / s$$

$$\omega^{1} = \sqrt{\omega^{2} - \left(\frac{b}{2m}\right)^{2}} = \sqrt{5^{2} - \left(\frac{12}{2 \times 2}\right)^{2}} = 4 \ rad \ / \ s$$

 \Rightarrow Frequency decreases by 20%

8. (1) ::
$$g = \frac{GM}{R^2}$$

$$\frac{g_p}{g_e} = \frac{M_e}{M_e} \left(\frac{R_e}{R_p}\right)^2 = 3\left(\frac{1}{3}\right)^2 = \frac{1}{3}$$

Also,
$$T \propto \frac{1}{\sqrt{g}} \Rightarrow \frac{T_p}{T_e} = \sqrt{\frac{g_e}{g_p}} = \sqrt{3} \Rightarrow \sqrt{n} = \sqrt{3} \Rightarrow n = 3$$

10. (4) They will be in phase for 1st time after 15 sec
 ⇒ no. of oscillation of 3 sec pendulum = 15/3 = 5 (the slower one). For fast pendulum no. of oscillation must be 6 (∵ it's the first time they are in phase)

$$6T = 15 \text{ sec} \Rightarrow T = 2.5 \text{ sec}$$

$$T = 2\pi \sqrt{\frac{I}{mgh}} \qquad I = \frac{3}{2}mR^{2}, h = R$$

$$T_{1} = 2\pi \sqrt{\frac{3}{2}mR^{2}} = 2\pi \sqrt{\frac{3R}{2g}}$$

$$T_{2} = 2\pi \sqrt{\frac{2r}{g}} \qquad \therefore T_{1} = T_{2}$$

$$2\pi \sqrt{\frac{2r}{g}} = 2\pi \sqrt{\frac{3R}{2g}}$$

$$\therefore r = \frac{3}{4}R \implies n = 0.75$$
2. (2)
$$V(x) = (1.23) + (4.84)x^{2}$$

$$\frac{1}{2}m\omega^{2}x^{2} = 4.84x^{2}$$

$$\omega^{2} = \frac{2 \times 4.84}{2} = \frac{2 \times 4.84}{2} = \frac{2 \times 4.84 \times 10^{3}}{2}; \quad \omega^{2} = 4 \times 4$$

1

$$V(x) = (1.23) + (4.84)x^{2}$$

$$\frac{1}{2}m\omega^{2}x^{2} = 4.84x^{2}$$

$$\omega^{2} = \frac{2 \times 4.84}{m} = \frac{2 \times 4.84}{5 \times 10^{-3}} = \frac{2 \times 4.84 \times 10^{3}}{5}; \quad \omega^{2} = 4 \times 484 = 4 \times 4 \times 121$$

$$\omega = 4 \times 11; \quad n = \frac{\omega}{2\pi} = \frac{4 \times 11}{2 \times 22} \times 7 = 7$$

13. (4)

Comparing with standard wave equation $y(x, t) = A \sin(kx - \omega t)$

$$u_{wave} = \frac{\omega}{k}, v_p = \frac{\partial y}{\partial t}$$

14. (1)

> All choices show amplitude of 2 cm, wavelength 1 m and wave-velocity of 5.0 m/s But only (a) shows y = 0 and $\frac{dy}{dt} \ne 0$ of for x = 0, t = 0

15. (3)

> Frequency of the sound = $\frac{No.of \ waves}{\sec} = \frac{54}{60} = 9 / 10 Hz$ Velocity of the wave (V) = frequency × wavelength = $\left(\frac{9}{10}\right) \times 10 = 9 m / s$

16. (4)

Velocity of the sound V = 340 m/s, frequency of the sound (n) = 680 Hz wavelength $(\lambda) = \frac{Velocity}{frequency} = \frac{340}{680} = \frac{1}{2}$ $\Delta x = \frac{\lambda}{2}$ for out of phase $\Delta x = \frac{1}{4}m$

17. (4) $\Delta x = \frac{\lambda}{2} \implies \lambda = 44 \, mm$ Velocity of the wave (V) = (frequency) (wavelength) $V = 3750 \times 44 \times 10^{-3} \implies V = 165 m / s$

18. (1)

$$V_{P} = 4V_{W} \implies a\omega = 4\frac{\omega}{K} \implies K = \frac{4}{a}$$

19. (3)

> Minimum distance between two particles in similar phase means (wavelength) $\lambda = 10$ cm Time = $0.05 = 5 \times 10^2$

$$V = \frac{\lambda}{T} = \frac{10}{5 \times 10^{-2}} = 200 \, cm \, / \, s$$

20. (1)

Standard wave equation travelling along x-axis

In positive direction, $y = a \sin(\omega t - kx)$

Here, amplitude (A) = 0.04; Frequency (f) = 440 Hz; Velocity (V) = 330 m/s

So the wave equation,
$$y = 0.04 \sin 2\pi \left(440t - \frac{4x}{3} \right)$$

22. (2)

Maximum particle velocity = aK (wave velocity)

$$\Rightarrow 3V = aKV \Rightarrow \left(\frac{2\pi}{\lambda}\right) = K = 3/a \Rightarrow \text{ phase difference} = \left(\frac{2\pi}{\lambda}\right) \text{ path difference}$$

 \Rightarrow Phase difference = 3x/a

23. (4)

From equation A = 0.4, $\omega = \pi / 5$, K = $\pi / 9$, $\phi = \pi / 6$

$$K = \frac{\pi}{9} \implies \frac{2\pi}{\lambda} = \frac{\pi}{9} \implies \lambda = 18m$$

24. (3) For half cycle, the path is equal to
$$\lambda / 2$$

 $5(\lambda / 2) = 20 \implies \lambda = 8 cm$
Velocity = 320 m/s
 $V = n\lambda \implies 320 = (n) \cdot 8 \times 10^{-2}$
 $n = 4000$ Hz
25. (1)

25.

The general equation is $y = A \cdot e^{-k(x+\partial)^2}$ for a wave travelling along negative X-axis is given by

 $y = A \cdot e^{-\frac{1}{a}\left(x + \frac{a}{T}t\right)^2}$. This pulse travel along negative axis.

At t = 0 the maximum of pulses located at x = 0 as the maximum of the pulse moves along negative axis

At t = T is located at d = V × T, d =
$$\frac{a}{T} \times T = a \implies x = -a$$

At t = 2T $\implies d = V \times 2T = \frac{a}{T} \times 2T = 2a \implies X = -2a$

26. (1)

The standard equation is, $y = a \cos(Kx - \omega t) = a \cos\left(\frac{2\pi}{\lambda}x - 2\pi nt\right)$ Given that a = 0.5 m, $\lambda = 1 \text{ m}$ and n = 2 Hz $\therefore y = 0.5 \cos(2\pi x - 4\pi t)$ 27. (1)Mass per unit length of the wire, $m = 10^{-4} \text{ kg/m}$ Now, $y = 0.02 \sin(9x + 270t) = A \sin(kx - \omega t)$ \therefore Wave velocity, $v = \frac{\omega}{k} = \frac{270}{9} = 30 \, m \, / \, s$ $v = \sqrt{\frac{T}{m}}$ $\therefore T = v^2 \cdot m$ $=30\times30\times10^{-4}=9\times10^{-2}N$ = 0.09 N 28. (1) $v = \sqrt{\frac{T}{\mu}}$ $\frac{v_1}{v_2} = \sqrt{\frac{T_1}{T_2}}$ $T_2 = 1.44T_1 \implies v_2 = 1.2v_1$ $\frac{v_2}{v_1} = 6:5$ 29. (1)Comparing the given equation with $Y = Ae^{kx} \cdot e^{\omega t}$, we get $\omega = 3$ and k = 2 $\therefore v = \frac{\omega}{k} = \frac{3}{2}m/s$ Thus, the given equation represents a progressive wave travelling in -ve x-direction with velocity $\frac{3}{2}m/s$.

32. (4)
$$y = y_0 \sin\left[\frac{2\pi}{\lambda}vt - \frac{2\pi}{\lambda}x\right] = A\sin(\omega t - kx)$$

Maximum particle velocity = $A\omega = y_0 \cdot \frac{2\pi}{\lambda} \cdot v$

Wave velocity $= \frac{\omega}{k} = \frac{2\pi}{\lambda} v \cdot \frac{\lambda}{2\pi} = v$ Now, $y_0 \cdot \frac{2\pi}{\lambda} \cdot v = 2v$ $\therefore \lambda = \pi \cdot y_0$ (2)

33.

Since, frequency along the string remains the same, velocity changes with tension.

But velocity,
$$v \propto \sqrt{T}$$

 $\therefore \frac{\lambda_2}{\lambda_1} = \sqrt{\frac{T_2}{T_1}} = \sqrt{\frac{4+12}{4}} = 2$
 $\therefore \lambda_2 = 0.04 \times 2 = 0.08m$
35. (1)
Comparing the function with $\frac{a}{b + (\omega t - kx)^2}$
 $\omega, 3, k = 2$ $\therefore v = \frac{\omega}{k} = \frac{3}{2} = 1.5 m / s$
36. (1) $y_1 = 4 \sin\left(\omega t + \frac{\pi}{2}\right)$
 $\therefore \frac{dy_1}{dt} = vl1 = 4\omega \cos\left(\omega t + \frac{\pi}{2}\right)$
 $\therefore (v_1)_{\max} = 4\omega$
And $y_2 = 2 \sin\left(\omega t - \frac{\pi}{2}\right)$
 $\frac{dy_2}{dt} = v_2 = 2\omega \cos\left(\omega t - \frac{\pi}{2}\right)$
 $\therefore (v_2)_{\max} = 2\omega$
 $\therefore v_1$ and v_2 differ in phase by π
 \therefore Maximum resultant velocity $= 4\omega - 2\omega = 2\omega$
37. (1)
 $y_1 = 10 \sin\left(3\pi t + \frac{\pi}{4}\right)$
and $y_2 = 5\sin 3\pi t + 5\sqrt{3}\cos 3\pi t$
here $A_1 = 10$ and $A_2 = \sqrt{5^2 + (5\sqrt{3})^2} = 10$
 $\therefore \frac{A_1}{A_2} = \frac{1}{1}$

CHEMISTRY

- 31. $2KMnO_4 + 3H_2SO_4 + 10HCl \rightarrow$
- 33. PbI_4 is least stable because of two reasons
 - (1) Size of iodine is biggest.
 - (2) +2 oxidation state of Pb is more stable than +4 state because of inert pair effect

34. $Cl_2 + NaF \rightarrow No$ reaction

Since Cl_2 is less electronegative then F_2 . Therefore unable to displace fluorine from its salt

36.
$$CS_2 + 3Cl_2 \xrightarrow{l_2} CCl_4 + S_2Cl_2$$

37. According to the Fajan's rule largest cation and smallest anion

38. $2F_2 + 4NaOH \rightarrow 4HF + 2H_2O + O_2$

39. $Cl_2 \rightarrow 2Cl \Delta H = +ve$

High temperature and low pressure is favourable

- 40. BF_3 accept lone pair of electrons.
- 41. CrO_2Cl_2 is a orange red gas.
- 44. Florine always show -1 oxidation state.
- 45. Solid NaF is used to purify fluorine *i.e.* by removing of HF fumes
- 46. $KHF_2 \rightarrow KF + HF$

$$KF \rightarrow K^+ + F^-$$

At cathode : $K^+ + e^- \rightarrow K$
 $2K + 2HF \rightarrow 2KF + H_2$

At anode : $F^- \rightarrow F + e^-$

 $F + F \rightarrow F_2$

48. Small atomic size of Li and F lattice energy is highest.

49. SO_2 bleaches flower by reduction

$$2H_2O + SO_2 \rightarrow H_2SO_4 + 2[H]$$

 $\begin{array}{ccc} 2[H] + \text{Coloured} & \xrightarrow{\text{Reduction}} & \text{Colourless} \\ \text{flower} & & \text{reduced flower} \end{array}$

This bleaching is temporary because reduced flower again oxidised by air to form coloured flower

$$\begin{array}{c} Cl_2 + H_2O \rightarrow 2HCl + [O] \\ [O] + Coloured \xrightarrow{Oxidation} Colourless \\ flower \xrightarrow{Oxidised flower} \end{array}$$

This bleaching is permanent because oxidised flower remains colourless.

- 50. Fluorine does not form oxyacids because it is more electronegative than oxygen
- 53. $MnO_2 + 4HCl \rightarrow MnCl_2 + 2H_2O + Cl_2$

 $2KMnO_4 + 3H_2SO_4 + 10HCl \rightarrow$

55.
$$3KClO_3 + 3H_2SO_4$$
 — Heat

- 56. F > Cl > Br > I. As the size increases electronegativity decreases
- 57. Ionic radius increases on going down the group because no. of shells increases
- 58. Reducing properties increase from F to I so it oxidise by nitric acid.

$$I_2 + 10 HNO_3 \rightarrow 2HIO_3 + 10 NO_2 + 4H_2O$$

59. *F*, *Cl*, *Br* all

Fluorine and chlorine are more electronegative than sulphur

- 60. Upper halogen can replace lower halogen from their compounds solution.
- 61. Iodine (I_2) is slightly soluble in water but it dissolves in 10% aqueous solution of *KI* due to the formation of potassium triodide (KI_3) .
- 62. Due to highest electronegativity of fluorine the anion $[F - H F]^-$ exists as a result of strong hydrogen bond by which κ^+ associate to form κHF_2 .
- 63. Fluorine is the most electronegative element. It does not form oxyfluoxides like other halogens. If reacts with *NaOH* to form sodium fluoride and oxygen fluoride.

 $2NaOH + 2F_2 \rightarrow 2NaF + OF_2 + H_2O$

- 64. Due to unpaired $e^{-}ClO_{2}$ is paramagnetic
- 65. Oxidation number of $HBrO_4$ is more than that of HOCl, HNO_2 and H_3PO_3 so it is the strongest acid among these.
- 66. Chlorine heptachloride (Cl_2O_7) is the anhydride of perchloric acid.

$$2HClO_4 \xrightarrow{\Delta} Cl_2O_7 + H_2O$$

67. I_2 forms complex ion I_3^- in KI solution due to which it dissolves in it

71. XeF_2 , XeF_4 & XeF_6 can be directly prepared

$$\begin{array}{l} Xe+F_2 \xrightarrow{Ni \text{ tube}} XeF_2 \ ; \quad Xe+2F_2 \xrightarrow{673 K} XeF_4 \\ Xe+3F_2 \xrightarrow{523-573 K} XeF_6 \end{array}$$

 XeO_3 is obtained by the hydrolysis of XeF_6

$$XeF_6 + 3H_2O \rightarrow XeO_3 + 6HF$$

- 73. XeO_3 shows sp^3 hybridization.
- 74. It is because
 - (1) Small atomic size
 - (2) High Ionization energy
 - (3) Absence of *d*-orbitals
- 75. Zero group element are attached with weak intermolecular force
- 76. XeF_2 , XeF_4 , XeF_6 .
- 78. Neil Bartlett prepared first noble gas compound. Xenon hexafluoroplatinate (IV)
- 80. He, Ne, and Kr all are found in very little amount in atmosphere, so all are called rare gas
- 81. Helium is twice as heavy as hydrogen, its lifting power is 92% of that of hydrogen. Helium has the lowest melting and boiling point of any element which makes liquid helium an ideal coolant for many extremely low temperature application such as super conducting magnet and cryogenic research where temperature close to absolute zero are needed
- 82. The maximum temperature at which gas can be liquified is called its critical temperature. The gas which have high boiling point will change into liquid first and so critical temperature of the gas will be more.
 - $T_C \propto B.P.$ and B.P. \propto Molecular weight

So Kr liquifies first.

83. Suppose the oxidation state of Xe is $x \cdot XeOF_2$

 $x + (-2) + 2(-1) = 0 \implies x - 2 - 2 = 0 \implies x = 4$.

- 84. *He Ne Ar Kr Xe Rn* Boiling point of - 269 - 246 - 186 - 153.6 - 108.1 - 62 Inert gases
- 86. In the formation of x_{eF_4, sp^3d^2} hybridisation occurs which gives the molecule an octahedral structure. The xenon and four fluorine atoms are coplanar while the two equatorial positions are occupied by the two lone pairs of electrons.
